OBJECTIVE: This research was proposed to develop a co-processed excipient composed of xylitol, mannitol, and microcrystalline cellulose for the formulation of ODTs.
METHODS: A total of 11 formulations of co-processed excipients with different ratios of ingredients were prepared, which were then compressed into ODTs, and their characteristics were thoroughly examined. The primary focus was on evaluating the disintegration time and hardness of the tablets, as these factors are important in ensuring the ODTs meet the desired criteria. The model drug, Mirtazapine was then incorporated into the chosen optimized formulation.
RESULTS: The results showed that the formulation comprised of 10% xylitol, 10% mannitol and 80% microcrystalline cellulose demonstrated the fastest disintegration time (1.77 ± 0.119 min) and sufficient hardness (3.521 ± 0.143 kg) compared to the other formulations. Furthermore, the drug was uniformly distributed within the tablets and fully released within 15 min.
CONCLUSION: Therefore, the developed co-processed excipients show great potential in enhancing the functionalities of ODTs, offering a promising solution to improve the overall performance and usability of ODTs in various therapeutic applications.
MATERIALS AND METHODS: Seventy-five participants underwent MRE as an initial investigation or follow-up for inflammatory bowel disease. A systematic sampling method was used to divide the participants into three different groups: group 1 received 6.7% mannitol concentration, group 2 received 3.3% mannitol concentration and group 3 received pineapple juice as an oral contrast agent during their MRE examination. The degree of bowel distension on MRE images was assessed by a radiologist by measuring the bowel diameter from inner wall to inner wall at specified levels, while qualitative analysis was evaluated based on the presence of artefacts. All patients were asked to score their acceptance of the oral contrast and were asked about side effects such as diarrhoea, abdominal discomfort and vomiting.
RESULTS: All patients were able to completely ingest 1.5L of oral contrast. The mean diameter of bowel distension was 2.1cm in patients who received 6.7% mannitol concentration, 2.0cm in patients who received 3.3% mannitol concentration and 1.6 cm in patients who received pineapple juice. Twothirds of patients who received 6.7% mannitol and 3.3% mannitol solutions had good-quality MRE images, but 68% of patients who received pineapple juice had poor-quality MRE images. Twenty-four patients (96%) who received pineapple juice rated it as slightly acceptable and acceptable but only 12 patients (48%) who received 6.7% mannitol solution rated it as slightly acceptable and acceptable. Eighty-eight percent of patients who received 6.7% mannitol solution experienced at least one form of side effect as compared to 44% of patients who received 3.3% mannitol solution and 18% of patients who received pineapple juice.
CONCLUSION: Optimum small bowel distension and good image quality can be achieved using 3.3% mannitol concentration as an oral contrast agent. Increase in mannitol concentration does not result in significant improvement of small bowel distension or image quality but is instead related to poorer patient acceptance and increased side effects. Pineapple juice is more palatable than mannitol and produces satisfactory small bowel distension. However, the small bowel distension is less uniform when using pineapple juice with a considerable presence of artefacts. Mannitol, 3.3% concentration, is therefore recommended as an endoluminal contrast agent for bowel in MRE.
METHOD: Air interface biofilm was cultured onto Snapwell inserts incorporated into a modified pharmacopeia deposition apparatus, the Anderson Cascade Impactor (ACI). Three different formulations including mannitol only, ciprofloxacin only and combined ciprofloxacin and mannitol were nebulised onto the P. aeruginosa biofilm using the modified ACI. Antibacterial effectiveness was evaluated using colony-forming units counts, biofilm penetration and scanning electron microscopy.
RESULTS: Nebulised mannitol promotes the dispersion of bacteria from the biofilm and demonstrated a synergistic enhancement of the antibacterial efficacy of ciprofloxacin compared to delivery of antibiotic alone.
CONCLUSIONS: The combination of ciprofloxacin and mannitol may provide an important new strategy to improve antibiotic therapy for the treatment of chronic lung infections. Furthermore, the development of a representative lung model of bacterial biofilm could potentially be used as a platform for future new antimicrobial pre-clinical screening.