Displaying all 11 publications

Abstract:
Sort:
  1. Ngai ZN, Chok KC, Ng KY, Koh RY, Chye SM
    Horm Mol Biol Clin Investig, 2022 Dec 01;43(4):485-503.
    PMID: 35728260 DOI: 10.1515/hmbci-2022-0018
    Lung cancer is the second most common cancer and the most lethal cancer worldwide. Melatonin, an indoleamine produced in the pineal gland, shows anticancer effects on a variety of cancers, especially lung cancer. Herein, we clarify the pathophysiology of lung cancer, the association of circadian rhythm with lung, and the relationship between shift work and the incidence of lung cancer. Special focus is placed on the role of melatonin receptors in lung cancer, the relationship between inflammation and lung cancer, control of cell proliferation, apoptosis, autophagy, and immunomodulation in lung cancer by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as a comprehensive reference for the various mechanisms of action of melatonin against lung cancer, as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for lung cancer.
    Matched MeSH terms: Receptors, Melatonin/metabolism
  2. Kononenko N, Hnatiuk V
    Malays J Pathol, 2017 Apr;39(1):39-45.
    PMID: 28413204
    BACKGROUND: The relationship between the activity of the epiphysis and gonads in rats of different sex and age in different seasons of the year was determined by studying the levels of melatonin and testosterone in the blood plasma. Determination of the levels of melatonin and testosterone in the serum of rats was carried out by enzyme-linked immunosorbent assay. To assess the relationship between the levels of melatonin and testosterone the correlation coefficient was calculated. Based on the study of the levels of melatonin and testosterone in serum the circannual relationship between the activity of the pineal gland and gonads in males of reproductive age has been determined. In females, the relationship between the levels of melatonin and testosterone without the circannual dependence has been determined. The strongest correlation between melatonin and testosterone is present in males at the age of 9 months in autumn, and it corresponds to the human age of 29-30 years.
    Matched MeSH terms: Melatonin/metabolism
  3. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Cardinali DP
    Integr Cancer Ther, 2008 Sep;7(3):189-203.
    PMID: 18815150 DOI: 10.1177/1534735408322846
    Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonin's oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-gamma. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a "natural restraint" on tumor initiation, promotion, and progression.
    Matched MeSH terms: Melatonin/metabolism
  4. Srinivasan V, Mohamed M, Zakaria R, Ahmad AH
    Infect Disord Drug Targets, 2012 Oct;12(5):371-9.
    PMID: 23082960
    Malaria, one of the most deadly diseases of our time affects more than 200 million people across the globe and is responsible for about one million deaths annually. Until recently Plasmodium falciparum has been the main cause for malarial infection in human beings but now Plasmodium knowlesi from Malaysia remains as one of the most virulent parasite spreading fast not only in Malaysia but in different parts of the world. Hence there is urgent need for the global fight to control malaria. Global malaria eradication program by use of insecticide spraying has resulted in good response in the past. Treatment of malaria infected patients with anti-malarial drugs has helped to eliminate malarial infections successfully but with increased resistance displayed by malarial parasites to these drugs there is resurgence of malaria caused both by drug resistance as well as by infection caused by new malarial species like Plasmodium knowlesi. With recent advances on molecular studies on malarial parasites it is now clear that the pineal hormone melatonin acts as a cue for growth and development of Plasmodium falciparum. Same may be true for Plasmodium knowlesi also. Hence treatment modalities that can effectively block the action of melatonin on Plasmodium species during night time by way of using either bright light therapy or use of melatonin receptor blocking can be considered as useful approaches for eliminating malarial infection in man.
    Matched MeSH terms: Melatonin/metabolism*
  5. Srinivasan V, Spence DW, Trakht I, Pandi-Perumal SR, Cardinali DP, Maestroni GJ
    Neuroimmunomodulation, 2008;15(2):93-101.
    PMID: 18679047 DOI: 10.1159/000148191
    Melatonin is not only synthesized by the pineal gland but also in many other organs and tissues of the body, particularly by lymphoid organs such as the bone marrow, thymus and lymphocytes. Melatonin participates in various functions of the body, among which its immunomodulatory role has assumed considerable significance in recent years. Melatonin has been shown to be involved in the regulation of both cellular and humoral immunity. Melatonin not only stimulates the production of natural killer cells, monocytes and leukocytes, but also alters the balance of T helper (Th)-1 and Th-2 cells mainly towards Th-1 responses and increases the production of relevant cytokines such as interleukin (IL)-2, IL-6, IL-12 and interferon-gamma. The regulatory function of melatonin on immune mechanisms is seasonally dependent. This fact may in part account for the cyclic pattern of symptom expression shown by certain infectious diseases, which become more pronounced at particular times of the year. Moreover, melatonin-induced seasonal changes in immune function have also been implicated in the pathogenesis of seasonal affective disorder and rheumatoid arthritis. The clinical significance of the seasonally changing immunomodulatory role of melatonin is discussed in this review.
    Matched MeSH terms: Melatonin/metabolism
  6. Srinivasan V, Pandi-Perumal SR, Trakht I, Spence DW, Hardeland R, Poeggeler B, et al.
    Psychiatry Res, 2009 Feb 28;165(3):201-14.
    PMID: 19181389 DOI: 10.1016/j.psychres.2007.11.020
    Profound disturbances in sleep architecture occur in major depressive disorders (MDD) and in bipolar affective disorders. Reduction in slow wave sleep, decreased latency of rapid eye movement (REM) sleep and abnormalities in the timing of REM/non-REM sleep cycles have all been documented in patients with MDD. It is thus evident that an understanding of the basic mechanisms of sleep regulation is essential for an analysis of the pathophysiology of depressive disorders. The suprachiasmatic nucleus (SCN), which functions as the body's master circadian clock, plays a major role in the regulation of the sleep/wakefulness rhythm and interacts actively with the homeostatic processes that regulate sleep. The control of melatonin secretion by the SCN, the occurrence of high concentrations of melatonin receptors in the SCN, and the suppression of electrical activity in the SCN by melatonin all underscore the major influence which this neurohormone has in regulating the sleep/wake cycle. The transition from wakefulness to high sleep propensity is associated with the nocturnal rise of endogenous melatonin secretion. Various lines of evidence show that depressed patients exhibit disturbances in both the amplitude and shape of the melatonin secretion rhythm and that melatonin can improve the quality of sleep in these patients. The choice of a suitable antidepressant that improves sleep quality is thus important while treating a depressive disorder. The novel antidepressant agomelatine, which combines the properties of a 5-HT(2C) antagonist and a melatonergic MT(1)/MT(2) receptor agonist, has been found very effective for resetting the disturbed sleep/wake cycle and in improving the clinical status of MDD. Agomelatine has also been found useful in treating sleep problems and improving the clinical status of patients suffering from seasonal affective disorder.
    Matched MeSH terms: Melatonin/metabolism*
  7. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Cardinali DP
    Travel Med Infect Dis, 2008 Jan-Mar;6(1-2):17-28.
    PMID: 18342269 DOI: 10.1016/j.tmaid.2007.12.002
    Each year millions of travelers undertake long distance flights over one or more continents. These multiple time zone flights produce a constellation of symptoms known as jet lag. Familiar to almost every intercontinental traveler is the experience of fatigue upon arrival in a new time zone, but almost as problematic are a number of other jet lag symptoms. These include reduced alertness, nighttime insomnia, loss of appetite, depressed mood, poor psychomotor coordination and reduced cognitive skills, all symptoms which are closely affected by both the length and direction of travel. The most important jet lag symptoms are due to disruptions to the body's sleep/wake cycle. Clinical and pathophysiological studies also indicate that jet lag can exacerbate existing affective disorders. It has been suggested that dysregulation of melatonin secretion and occurrence of circadian rhythm disturbances may be the common links which underlie jet lag and affective disorders. Largely because of its regulatory effects on the circadian system, melatonin has proven to be highly effective for treating the range of symptoms that accompany transmeridian air travel. Additionally, it has been found to be of value in treating mood disorders like seasonal affective disorder. Melatonin acts on MT(1) and MT(2) melatonin receptors located in the hypothalamic suprachiasmatic nuclei, the site of the body's master circadian clock. Melatonin resets disturbed circadian rhythms and promotes sleep in jet lag and other circadian rhythm sleep disorders, including delayed sleep phase syndrome and shift-work disorder. Although post-flight melatonin administration works efficiently in transmeridian flights across less than 7-8 times zones, in the case longer distances, melatonin should be given by 2-3 days in advance to the flight. To deal with the unwanted side effects which usually accompany this pre-departure treatment (acute soporific and sedative effects in times that may not be wanted), the suppression of circadian rhythmicity by covering symmetrically the phase delay and the phase advance portions of the phase response curve for light, together with the administration of melatonin at local bedtime to resynchronize the circadian oscillator, have been proposed. The current view that sleep loss is a major cause of jet lag has focused interest on two recently developed pharmacological agents. Ramelteon and agomelatine are melatonin receptor agonists which, compared to melatonin itself, have a longer half-life and greater affinity for melatonin receptors and consequently are thought to hold promise for treating a variety of circadian disruptions.
    Matched MeSH terms: Receptors, Melatonin/metabolism
  8. Hang CY, Kitahashi T, Parhar IS
    J Neurochem, 2015 May;133(4):501-10.
    PMID: 25727787 DOI: 10.1111/jnc.13084
    Zebrafish possess two isoforms of vertebrate ancient long (VAL)-opsin, val-opsinA (valopa) and val-opsinB (valopb), which probably mediate non-visual responses to light. To understand the diurnal and light-sensitive regulation of the valop genes in different cell groups, the current study used real-time quantitative PCR to examine the diurnal changes of valopa and b mRNA levels in different brain areas of adult male zebrafish. Furthermore, effects of the extended exposure to light or dark condition, luminous levels and the treatment with a melatonin receptor agonist or antagonist on valop transcription were examined. In the thalamus, valop mRNA levels showed significant diurnal changes; valopa peaked in the evening, while valopb peaked in the morning. The diurnal change of valopa mRNA levels occurred independent of light conditions, whereas that of valopb mRNA levels were regulated by light. A melatonin receptor agonist or antagonist did not affect the changes of valop mRNA levels. In contrast, the midbrain and hindbrain showed arrhythmic valop mRNA levels under light and dark cycles. The differential diurnal regulation of the valopa and b genes in the thalamus and the arrhythmic expression in the midbrain and hindbrain suggest involvement of deep brain VAL-opsin in time- and light-dependent physiology. We show diurnal expression changes of vertebrate ancient long (VAL) opsin genes (valopa and valopb), depending on brain area, time of day and light condition, in the adult male zebrafish. Differential regulation of the valop genes in the thalamus and arrhythmic expression in the midbrain and hindbrain suggest their involvement in time- and light-dependent physiology to adjust to environmental changes.
    Matched MeSH terms: Receptors, Melatonin/metabolism
  9. Loganathan K, Moriya S, Parhar IS
    Zoolog Sci, 2019 04 01;36(2):167-171.
    PMID: 31120653 DOI: 10.2108/zs180111
    The two-pore domain potassium ion (K + ) channel-related K + (TREK) channel and melatonin receptors play roles in the regulation of reproduction in zebrafish. Since reproduction is regulated by diurnal rhythms, the TREK family and melatonin receptors may exhibit diurnal rhythms in expression. In this study, we aimed to investigate diurnal variations of the gene expressions of TREK family and melatonin receptors and their associations with kisspeptin and gonadotrophin-releasing hormone (GnRH). Diurnal variations of trek1b, trek2a, trek2b, mt1, mt2, mel1a, kiss2 and gnrh3 expressions were examined by real-time PCR. For reproduction-related genes, kiss2 and gnrh3 exhibited diurnal rhythms. trek2a revealed a diurnal rhythm in the TREK family. mt2 and mel1c exhibited diurnal rhythms in the melatonin receptors. Since Trek2a regulates gnrh3 expression, the diurnal rhythm of gnrh3 expression suggests to be regulated by the diurnal rhythm of trek2a expression.
    Matched MeSH terms: Receptors, Melatonin/metabolism
  10. Loganathan K, Moriya S, Parhar IS
    Biochem Biophys Res Commun, 2018 02 12;496(3):927-933.
    PMID: 29395088 DOI: 10.1016/j.bbrc.2018.01.117
    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α2-adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α2-adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α2-adrenoceptor.
    Matched MeSH terms: Melatonin/metabolism*
  11. Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP
    Neurotox Res, 2005;7(4):293-318.
    PMID: 16179266
    The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases, e.g., Alzheimer's disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer's disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer's disease but not of Parkinson's disease. Melatonin's efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.
    Matched MeSH terms: Melatonin/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links