Self-regulation is a widely studied construct, generally assumed to be cognitively supported by executive functions (EFs). There is a lack of clarity and consensus over the roles of specific components of EFs in self-regulation. The current study examines the relations between performance on (a) a self-regulation task (Heads, Toes, Knees Shoulders Task) and (b) two EF tasks (Knox Cube and Beads Tasks) that measure different components of updating: working memory and short-term memory, respectively. We compared 107 8- to 13-year-old children (64 females) across demographically-diverse populations in four low and middle-income countries, including: Tanna, Vanuatu; Keningau, Malaysia; Saltpond, Ghana; and Natal, Brazil. The communities we studied vary in market integration/urbanicity as well as level of access, structure, and quality of schooling. We found that performance on the visuospatial working memory task (Knox Cube) and the visuospatial short-term memory task (Beads) are each independently associated with performance on the self-regulation task, even when controlling for schooling and location effects. These effects were robust across demographically-diverse populations of children in low-and middle-income countries. We conclude that this study found evidence supporting visuospatial working memory and visuospatial short-term memory as distinct cognitive processes which each support the development of self-regulation.
Regular aerobic exercise and milk consumption have been found to have positive effects on certain cognitive functions such as short-term memory and sustained attention. However, aggregated effects of combining these modalities have not been explored. This study examined the combined effects of milk supplementation and aerobic exercise on the short-term memory and sustained attention of female students aged 16 yr. (N = 81). The intervention involved serving of 250 ml of regular milk during school days and/or a 1-hr. aerobic exercise period twice per week for 6 weeks. The Digit Span Test and Digit Vigilance Test were used to measure short-term memory and sustained attention, respectively. The combination group (milk and exercise) and exercise group performed significantly better than did the milk and control groups in terms of short-term memory. No significant interaction or group differences were found for sustained attention. The results suggest benefits of regular exercise for students' short-term memory.
Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.
This study compared the effects of 6 and 12 sessions of relaxation training on emotional distress, short-term memory, and sustained attention in primary school children.
This study assessed the effects of age and working memory capacity on dichotic listening and temporal sequencing. Double Dichotic Digit Test (DDT), Pitch Pattern Sequence Test (PPST) and Digit Span Test were administered on 40 healthy adults with hearing thresholds of not greater than 30 dB HL across octave frequencies from 250 to 4000 Hz. Twenty young (20-30 years old) and 20 older (50-65 years old) adults were included in the study. Results showed that the older group had significantly lower scores in DDT, PPST and working memory capacity measures than the young subjects. Working memory capacity was positively correlated with PPST but not with DDT, suggesting that DDT might be more auditory-modality-specific than PPST.
Reading decoding ability is a fundamental skill to acquire word-specific orthographic information necessary for skilled reading. Decoding ability and its underlying phonological processing skills have been heavily investigated typically among developing students. However, the issue has rarely been noticed among students with intellectual disability who commonly suffer from reading decoding problems. This study is aimed at determining the contributions of phonological awareness, phonological short-term memory, and rapid automated naming, as three well known phonological processing skills, to decoding ability among 60 participants with mild intellectual disability of unspecified origin ranging from 15 to 23 years old. The results of the correlation analysis revealed that all three aspects of phonological processing are significantly correlated with decoding ability. Furthermore, a series of hierarchical regression analysis indicated that after controlling the effect of IQ, phonological awareness, and rapid automated naming are two distinct sources of decoding ability, but phonological short-term memory significantly contributes to decoding ability under the realm of phonological awareness.
This study investigated the relationship between trait emotional intelligence (TEI) and executive skills (ESs), and the differences between TEI and ESs among Malaysian and Iranian youths. In this study, 226 Malaysians and 248 Iranians completed the TEIQue-SF and Executive Skills Questionnaire. Hypotheses were tested with Partial Least Squares-Structural Equation Modeling (PLS-SEM). Findings indicated that TEI had significant predictions on ESs, depending on cultural contexts. Significant differences were found in the effects of TEI on ESs, including emotional control, metacognition, goal-directed persistence, response inhibition, planning/prioritization, sustained attention, stress tolerance, task initiation, and working memory among Malaysian and Iranian youth. No significant difference was found in the effects of TEI on ESs, including flexibility, organization, and time management across both groups. This study makes a unique contribution to emotional intelligence and executive functioning research literature by considering several ESs at the same time for personal development and promoting healthier lives. Comparison of the effect of TEI on ESs in the Malaysian and Iranian contexts using advanced analysis methods is one of the most important methodological contributions of the study.
Preventive maintenance activities require a tool to be offline for long hour in order to perform the prescribed maintenance activities. Although preventive maintenance is crucial to ensure operational reliability and efficiency of the tool, long hour of preventive maintenance activities increases the cycle time of the semiconductor fabrication foundry (Fab). Therefore, this activity is usually performed when the incoming Work-in-Progress to the equipment is forecasted to be low. The current statistical forecasting approach has low accuracy because it lacks the ability to capture the time-dependent behavior of the Work-in-Progress. In this paper, we present a forecasting model that utilizes machine learning method to forecast the incoming Work-In-Progress. Specifically, our proposed model uses LSTM to forecast multistep ahead incoming Work-in-Progress prediction to an equipment group. The proposed model's prediction results were compared with the results of the current statistical forecasting method of the Fab. The experimental results demonstrated that the proposed model performed better than the statistical forecasting method in both hit rate and Pearson's correlation coefficient, r.
The present study examined the impact of white noise on word recall performance and brain activity in 40 healthy adolescents, split in two groups (normal and low) depending on their auditory working memory capacity (AWMC). Using functional magnetic resonance imaging, participants performed a backward recall task under four different signal-to-noise ratio (SNR) conditions: 15, 10, 5, and 0-dB SNR. Behaviorally, normal AWMC individuals scored significantly higher than low AWMC individuals across noise levels. Whole-brain analyses showed brain activation not to be statistically different between groups across noise levels. In the normal group, a significant positive relationship was found between performance and number of activated voxels in the right superior frontal gyrus. In the low group, significant positive correlations were found between performance and number of activated voxels in left superior frontal gyrus, left inferior frontal gyrus, and left anterior cingulate cortex. These findings suggest that the strategic structure involved in the enhancement of AWM performance may differ in normal and low AWMC individuals.
We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM.
The objective of this study is to determine prevalence and factors leading to verbal learning and memory dysfunction among patients with epilepsy. A total of 211 subjects were recruited. Their verbal memory was assessed by Rey's Auditory Verbal Learning Test (RAVLT). This test was further subdivided into four major spheres for analysis, namely the verbal learning, interference list, immediate memory and delayed memory. All data collected were analyzed using Statistical Package for Social Sciences. Among the 211 patients, 55% (n = 116) had focal seizures and the remaining 45% (n = 95) had generalized seizures. Prevalence of verbal learning and memory impairment was high at 39.97% overall, and found most commonly in patients with focal impaired awareness seizures. Verbal learning and immediate memory dysfunction were significantly lower in focal impaired awareness group compared to others. Age more than 50 years, exposure to three or more antiepileptic drugs and use of carbamazepine more than 1000 mg a day were the predictors in poor verbal memory outcome. No statistical difference was observed in the mean RAVLT scores among the gender and hand dominance groups. Between patients with and without electroencephalogram changes as well as brain magnetic resonance imaging changes, the mean RAVLT scores showed no statistically significant difference. Verbal learning and memory impairment is prevalent among the epilepsy patients. The consequences of the memory impairment can be as debilitating as the seizure control. RAVLT is a reliable and practical test in the clinical setting.
This review aims to establish the cognitive processing of patients with attention-deficit hyperactive disorder (ADHD) across age. Functional magnetic resonance imaging (fMRI) studies on children and adult populations were conducted, thus delineating deficits that could have been maintained and ameliorated across age. This allowed for the examination of the correlation between patterns of brain activation and the corresponding development of functional heterogeneity in ADHD. A systematic literature search of fMRI studies on ADHD was conducted using the PubMed and Scopus electronic databases based on PRISMA guidelines. References and citations were verified in Scopus database. The present study has identified 14 studies on children, 16 studies on adults, and one study on both populations of ADHD consisting of 1371 participants. Functional heterogeneity is present in ADHD across age, which can manifest either as different brain activation patterns, intra-subject variability, or both. This is shown in the increased role of the frontal regions and the specialized network in adults with ADHD from inefficient non-specific activation in childhood. Functional heterogeneity may manifest when delayed maturation is insufficient to normalize frontal lobe functions.