Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Calleja MO, Willoughby AR
    Atten Percept Psychophys, 2023 Feb;85(2):293-300.
    PMID: 36596986 DOI: 10.3758/s13414-022-02634-9
    Previous experiments investigating visual search have shown that distractors that are semantically related to a search target can capture attention and slow the search process. In two experiments, we examine if distractors exactly matching, or semantically related to, search-irrelevant information held in working memory (WM) can also influence visual search while ruling out potential effects of color similarity. Participants first viewed and memorized an image of an everyday object, then they determined if a target item was present or absent in a two-object search array. On exact-match trials, the memorized object appeared as a distractor; on semantic-match trials, an object semantically related to the memorized object appeared as a distractor. Both exact-match and semantic-match distractors slowed search when the target was present in the search array. Our findings extend previous findings by demonstrating WM-driven attentional guidance by complex objects rather than simple features. The results also suggest that visual search can be influenced by distractors sharing only semantic features with a search-irrelevant, but active, WM representation.
    Matched MeSH terms: Memory, Short-Term*
  2. Allen RJ, Schaefer A, Falcon T
    Acta Psychol (Amst), 2014 Sep;151:237-43.
    PMID: 25086225 DOI: 10.1016/j.actpsy.2014.07.003
    The present article reports two experiments examining the impact of recollecting emotionally valenced autobiographical memories on subsequent working memory (WM) task performance. Experiment 1 found that negatively valenced recollection significantly disrupted performance on a supra-span spatial WM task. Experiment 2 replicated and extended these findings to a verbal WM task (digit recall), and found that both negative and positive autobiographical recollections had a detrimental effect on verbal WM. In addition, we observed that these disruptive effects were more apparent on early trials, immediately following autobiographical recollection. Overall, these findings show that both positive and negative affect can disrupt WM when the mood-eliciting context is based on autobiographical memories. Furthermore, these results indicate that the emotional disruption of WM can take place across different modalities of WM (verbal and visuo-spatial).
    Matched MeSH terms: Memory, Short-Term*
  3. Dutra NB, Chen L, Anum A, Burger O, Davis HE, Dzokoto VA, et al.
    Dev Sci, 2022 Sep;25(5):e13228.
    PMID: 35025126 DOI: 10.1111/desc.13228
    Self-regulation is a widely studied construct, generally assumed to be cognitively supported by executive functions (EFs). There is a lack of clarity and consensus over the roles of specific components of EFs in self-regulation. The current study examines the relations between performance on (a) a self-regulation task (Heads, Toes, Knees Shoulders Task) and (b) two EF tasks (Knox Cube and Beads Tasks) that measure different components of updating: working memory and short-term memory, respectively. We compared 107 8- to 13-year-old children (64 females) across demographically-diverse populations in four low and middle-income countries, including: Tanna, Vanuatu; Keningau, Malaysia; Saltpond, Ghana; and Natal, Brazil. The communities we studied vary in market integration/urbanicity as well as level of access, structure, and quality of schooling. We found that performance on the visuospatial working memory task (Knox Cube) and the visuospatial short-term memory task (Beads) are each independently associated with performance on the self-regulation task, even when controlling for schooling and location effects. These effects were robust across demographically-diverse populations of children in low-and middle-income countries. We conclude that this study found evidence supporting visuospatial working memory and visuospatial short-term memory as distinct cognitive processes which each support the development of self-regulation.
    Matched MeSH terms: Memory, Short-Term/physiology
  4. Anthony K, Wong HK, Lim A, Sow F, Janssen SM
    Q J Exp Psychol (Hove), 2024 Mar;77(3):447-460.
    PMID: 37649149 DOI: 10.1177/17470218231200724
    The retrieval of autobiographical memories involves the construction of mental representations of past personal events. Many researchers examining the processes underlying memory retrieval argue that visual imagery plays a fundamental role. Other researchers, however, have argued that working memory is an integral component involved in memory retrieval. The goal of this study was to resolve these conflicting arguments by comparing the relative contributions of visual imagery and working memory during the retrieval of autobiographical memories in a dual-task paradigm. While following a moving dot, viewing a dynamic visual noise (DVN), or viewing a blank screen, 95 participants recalled their memories and subsequently rated them on different memory characteristics. The results suggest that inhibiting visual imagery by having participants view DVN merely delayed memory retrieval but did not affect the phenomenological quality of the memories retrieved. Taxations to the working memory by having participants follow a moving dot, on the contrary, resulted in only longer retrieval latencies and no reductions in the specificity, vividness, or the emotional intensity of the memories retrieved. Whereas the role of visual imagery during retrieval is clear, future studies could further examine the role of working memory during retrieval by administering a task that is less difficult or by recruiting a larger sample than this study. The results of this study seem to suggest that both visual imagery and working memory play a role during the retrieval of autobiographical memory, but more research needs to be conducted to determine their exact roles.
    Matched MeSH terms: Memory, Short-Term
  5. Abd Hamid AI, Yusoff AN, Mukari SZ, Mohamad M
    Malays J Med Sci, 2011 Apr;18(2):3-15.
    PMID: 22135581 MyJurnal
    In spite of extensive research conducted to study how human brain works, little is known about a special function of the brain that stores and manipulates information-the working memory-and how noise influences this special ability. In this study, Functional magnetic resonance imaging (fMRI) was used to investigate brain responses to arithmetic problems solved in noisy and quiet backgrounds.
    Matched MeSH terms: Memory, Short-Term
  6. Leong IT, Moghadam S, Hashim HA
    Percept Mot Skills, 2015 Feb;120(1):57-66.
    PMID: 25621523 DOI: 10.2466/22.06.PMS.120v11x3
    Regular aerobic exercise and milk consumption have been found to have positive effects on certain cognitive functions such as short-term memory and sustained attention. However, aggregated effects of combining these modalities have not been explored. This study examined the combined effects of milk supplementation and aerobic exercise on the short-term memory and sustained attention of female students aged 16 yr. (N = 81). The intervention involved serving of 250 ml of regular milk during school days and/or a 1-hr. aerobic exercise period twice per week for 6 weeks. The Digit Span Test and Digit Vigilance Test were used to measure short-term memory and sustained attention, respectively. The combination group (milk and exercise) and exercise group performed significantly better than did the milk and control groups in terms of short-term memory. No significant interaction or group differences were found for sustained attention. The results suggest benefits of regular exercise for students' short-term memory.
    Matched MeSH terms: Memory, Short-Term/physiology*
  7. Lee K, Ng SF, Ng EL, Lim ZY
    J Exp Child Psychol, 2004 Oct;89(2):140-58.
    PMID: 15388303 DOI: 10.1016/j.jecp.2004.07.001
    Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient (IQ), and reading ability. Regression results were consistent with findings from the arithmetic literature showing that a literacy composite measure provided greater contribution than did executive function capacity. However, a series of path analyses showed that the overall contribution of executive function was comparable to that of literacy; the effect of executive function was mediated by that of literacy. Both the phonological loop and the visual spatial sketchpad failed to contribute directly; they contributed only indirectly by way of literacy and performance IQ, respectively.
    Matched MeSH terms: Memory, Short-Term*
  8. Ahmad RF, Malik AS, Kamel N, Reza F, Abdullah JM
    Australas Phys Eng Sci Med, 2016 Jun;39(2):363-78.
    PMID: 27043850 DOI: 10.1007/s13246-016-0438-x
    Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.
    Matched MeSH terms: Memory, Short-Term/physiology*
  9. Azman KF, Zakaria R, AbdAziz C, Othman Z, Al-Rahbi B
    Noise Health, 2015 Mar-Apr;17(75):83-9.
    PMID: 25774610 DOI: 10.4103/1463-1741.153388
    Recent evidence has exhibited dietary influence on the manifestation of different types of behavior induced by stressor tasks. The present study examined the effects of Tualang honey supplement administered with the goal of preventing or attenuating the occurrence of stress-related behaviors in male rats subjected to noise stress. Forty-eight adult male rats were randomly divided into the following four groups: i) nonstressed with vehicle, ii) nonstressed with Tualang honey, iii) stressed with vehicle, and iv) stressed with honey. The supplement was given once daily via oral gavage at 0.2 g/kg body weight. Two types of behavioral tests were performed, namely, the novel object recognition test to evaluate working memory and the forced swimming test to evaluate depressive-like behavior. Data were analyzed by a two-way analysis of variance (ANOVA) using IBM SPSS 18.0. It was observed that the rats subjected to noise stress expressed higher levels of depressive-like behavior and lower memory functions compared to the unexposed control rats. In addition, our results indicated that the supplementation regimen successfully counteracted the effects of noise stress. The forced swimming test indicated that climbing and swimming times were significantly increased and immobility times significantly decreased in honey-supplemented rats, thereby demonstrating an antidepressant-like effect. Furthermore, cognitive function was shown to be intensely affected by noise stress, but the effects were counteracted by the honey supplement. These findings suggest that subchronic exposure to noise stress induces depressive-like behavior and reduces cognitive functions, and that these effects can be attenuated by Tualang honey supplementation. This warrants further studies to examine the role of Tulang honey in mediating such effects.
    Matched MeSH terms: Memory, Short-Term*
  10. Almarzouki AF, Bellato A, Al-Saad MS, Al-Jabri B
    Appl Neuropsychol Child, 2023;12(3):202-213.
    PMID: 35549563 DOI: 10.1080/21622965.2022.2070020
    Working memory training has been proven effective for improving cognitive functioning in patients with Attention Deficit/Hyperactivity Disorder (ADHD). However, the feasibility of this type of training for children in Saudi Arabia has not been previously explored. We investigated the feasibility of implementing Cogmed Working Memory Training (CWMT) in a sample of 29 Saudi children with ADHD. We found no significant demographic or clinical differences between compliant and noncompliant children. Although compliant children were initially better at following instructions and reported better improvements in working memory and math skills compared to those who did not complete the CWMT, all children who participated in the program showed improvements in performing the CWMT tasks. Most parents found the Cogmed training feasible for their children, were satisfied and keen to continue with the program, and felt the training helped them to address their problems. Most children did not encounter any difficulties in using the software, and many families were, therefore, likely to continue using the techniques from the program. We conclude that CWMT for children with ADHD is feasible in Saudi Arabia. Larger case-controlled studies are needed to thoroughly investigate the effects of CWMT compared to other interventions in Saudi children with ADHD.
    Matched MeSH terms: Memory, Short-Term*
  11. Phillips LH, Lawrie L, Schaefer A, Tan CY, Yong MH
    Front Psychol, 2021;12:631458.
    PMID: 33692728 DOI: 10.3389/fpsyg.2021.631458
    Planning ability is important in everyday functioning, and a key measure to assess the preparation and execution of plans is the Tower of London (ToL) task. Previous studies indicate that older adults are often less accurate than the young on the ToL and that there may be cultural differences in performance on the task. However, potential interactions between age and culture have not previously been explored. In the current study we examined the effects of age on ToL performance in an Asian culture (Malaysia) and a Western culture (British) (n = 191). We also explored whether working memory, age, education, and socioeconomic status explained variance in ToL performance across these two cultures. Results indicated that age effects on ToL performance were greater in the Malaysian sample. Subsequent moderated mediation analysis revealed differences between the two cultures (British vs Malaysians), in that the age-related variance in ToL accuracy was accounted for by WM capacity at low and medium education levels only in the Malaysian sample. Demographic variables could not explain additional variance in ToL speed or accuracy. These results may reflect cultural differences in the familiarity and cognitive load of carrying out complex planning tasks.
    Matched MeSH terms: Memory, Short-Term
  12. Al-Qazzaz NK, Bin Mohd Ali SH, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2015;15(11):29015-35.
    PMID: 26593918 DOI: 10.3390/s151129015
    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
    Matched MeSH terms: Memory, Short-Term
  13. Guo L, Wang Y, Xu X, Cheng KK, Long Y, Xu J, et al.
    J Proteome Res, 2021 01 01;20(1):346-356.
    PMID: 33241931 DOI: 10.1021/acs.jproteome.0c00431
    Identification of phosphorylation sites is an important step in the function study and drug design of proteins. In recent years, there have been increasing applications of the computational method in the identification of phosphorylation sites because of its low cost and high speed. Most of the currently available methods focus on using local information around potential phosphorylation sites for prediction and do not take the global information of the protein sequence into consideration. Here, we demonstrated that the global information of protein sequences may be also critical for phosphorylation site prediction. In this paper, a new deep neural network model, called DeepPSP, was proposed for the prediction of protein phosphorylation sites. In the DeepPSP model, two parallel modules were introduced to extract both local and global features from protein sequences. Two squeeze-and-excitation blocks and one bidirectional long short-term memory block were introduced into each module to capture effective representations of the sequences. Comparative studies were carried out to evaluate the performance of DeepPSP, and four other prediction methods using public data sets The F1-score, area under receiver operating characteristic curves (AUROC), and area under precision-recall curves (AUPRC) of DeepPSP were found to be 0.4819, 0.82, and 0.50, respectively, for S/T general site prediction and 0.4206, 0.73, and 0.39, respectively, for Y general site prediction. Compared with the MusiteDeep method, the F1-score, AUROC, and AUPRC of DeepPSP were found to increase by 8.6, 2.5, and 8.7%, respectively, for S/T general site prediction and by 20.6, 5.8, and 18.2%, respectively, for Y general site prediction. Among the tested methods, the developed DeepPSP method was also found to produce best results for different kinase-specific site predictions including CDK, mitogen-activated protein kinase, CAMK, AGC, and CMGC. Taken together, the developed DeepPSP method may offer a more accurate phosphorylation site prediction by including global information. It may serve as an alternative model with better performance and interpretability for protein phosphorylation site prediction.
    Matched MeSH terms: Memory, Short-Term
  14. Dzulkarnain AAA, Azizi AK, Sulaiman NH
    J Taibah Univ Med Sci, 2020 Dec;15(6):495-501.
    PMID: 33318741 DOI: 10.1016/j.jtumed.2020.08.007
    Objective: This study aims to investigate the auditory sensory gating capacity in Huffaz using an auditory brainstem response (ABR) test with and without psychological tasks.

    Methods: Twenty-three participants were recruited for this study. The participants were comprised of 11 Huffaz who memorized 30 chapters of the Islamic Scripture (from the Quran) and 12 non-Huffaz as the control group. All participants had normal hearing perception and underwent an ABR test with and without psychological tasks. The ABR was elicited at 70 dB nHL using a 3000 Hz tone burst stimulus with a 2-0-2 cycle at a stimulus repetition rate of 40 Hz. The ABR wave V amplitude and latencies were measured and statistically compared. A forward digit span test was also conducted to determine participants' working memory capacity.

    Results: There were no significant differences in the ABR wave V amplitudes and latencies between Huffaz and non-Huffaz in ABR with and without psychological tasks. There were also no significant differences in the ABR wave V amplitudes and latencies in both groups of ABR with and without psychological tasks. In addition, no significant differences were identified in the digit span working memory score between both groups.

    Conclusions: In this study, based on the ABR findings, Huffaz showed the same auditory sensory gating capacity as the non-Huffaz group. The ABR result was consistent with the digit span working memory test score. This finding implies that both groups have similar working memory performance. However, the conclusion is limited to the specific assessment method that we used in this study.

    Matched MeSH terms: Memory, Short-Term
  15. Hasan AM, Jalab HA, Ibrahim RW, Meziane F, Al-Shamasneh AR, Obaiys SJ
    Entropy (Basel), 2020 Sep 15;22(9).
    PMID: 33286802 DOI: 10.3390/e22091033
    Brain tumor detection at early stages can increase the chances of the patient's recovery after treatment. In the last decade, we have noticed a substantial development in the medical imaging technologies, and they are now becoming an integral part in the diagnosis and treatment processes. In this study, we generalize the concept of entropy difference defined in terms of Marsaglia formula (usually used to describe two different figures, statues, etc.) by using the quantum calculus. Then we employ the result to extend the local binary patterns (LBP) to get the quantum entropy LBP (QELBP). The proposed study consists of two approaches of features extractions of MRI brain scans, namely, the QELBP and the deep learning DL features. The classification of MRI brain scan is improved by exploiting the excellent performance of the QELBP-DL feature extraction of the brain in MRI brain scans. The combining all of the extracted features increase the classification accuracy of long short-term memory network when using it as the brain tumor classifier. The maximum accuracy achieved for classifying a dataset comprising 154 MRI brain scan is 98.80%. The experimental results demonstrate that combining the extracted features improves the performance of MRI brain tumor classification.
    Matched MeSH terms: Memory, Short-Term
  16. Othman, E. A., Mohamad, M., Abdul Manan, H., Yusoff, A. N.
    MyJurnal
    This study investigated the effects of stochastic facilitation in healthy subjects with normal and low auditory working memory capacity (AWMC). Forty healthy volunteers were recruited in this study. They performed a backward recall task (BRT) in quiet and under four white noise intensity levels: 45, 50, 55, and 60 dB. Brain activations during the task were measured using functional magnetic resonance imaging (fMRI). The behavioral performance in both groups increased significantly in 50 and 55 dB white noise. The normal AWMC group (mean score = 48.70) demonstrated higher activation in the superior temporal gyrus and prefrontal cortex than the low AWMC group (mean score = 30.85). However, comparisons in the brain activation between groups for all noise levels were not statistically different. The results support previous findings that stochastic facilitation enhances cognitive performance in healthy individuals. The results also proposed that brain activity among healthy subjects is more or less similar, at least in the context of auditory working memory. These findings indicated that there were no differential effects of stochastic facilitation in healthy subjects with different AWMC.
    Matched MeSH terms: Memory, Short-Term
  17. Khairun Emylyana, Amin, Fitri Suraya, Mohamad
    MyJurnal
    The study investigates how working memory affects students' control of attention. A quasi-experimental research is conducted individually on 52 undergraduates of a public university in Malaysia, enrolled in various full-time undergraduate programmes, using Sternberg memory task and Task-switching tests. The reaction time is taken in milliseconds (ms) to differentiate the results for both tasks. The analysis revealed that when memory load was increased, reaction time also escalated. In the task-switching test, when one task was given at any one time, the reaction time was swift; however, when two or more tasks were integrated into one task, the reaction time would subsequently decelerated. Although the study also revealed that there is no significant difference between genders in terms of handling memory load and taskswitching. However, a significant relationship was observed in performances between memory load and task-switching. It is also evidenced in the study that when memory load increases, it compoundsthe reaction time for task-switching. Results from the study inform course instructors to be aware of cognitive load when chunking information and assigning tasks to students, as their decisions on content quantity bore an effect on what would be remembered when students learn.
    Matched MeSH terms: Memory, Short-Term
  18. Faust O, Shenfield A, Kareem M, San TR, Fujita H, Acharya UR
    Comput Biol Med, 2018 11 01;102:327-335.
    PMID: 30031535 DOI: 10.1016/j.compbiomed.2018.07.001
    Atrial Fibrillation (AF), either permanent or intermittent (paroxysnal AF), increases the risk of cardioembolic stroke. Accurate diagnosis of AF is obligatory for initiation of effective treatment to prevent stroke. Long term cardiac monitoring improves the likelihood of diagnosing paroxysmal AF. We used a deep learning system to detect AF beats in Heart Rate (HR) signals. The data was partitioned with a sliding window of 100 beats. The resulting signal blocks were directly fed into a deep Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The system was validated and tested with data from the MIT-BIH Atrial Fibrillation Database. It achieved 98.51% accuracy with 10-fold cross-validation (20 subjects) and 99.77% with blindfold validation (3 subjects). The proposed system structure is straight forward, because there is no need for information reduction through feature extraction. All the complexity resides in the deep learning system, which gets the entire information from a signal block. This setup leads to the robust performance for unknown data, as measured with the blind fold validation. The proposed Computer-Aided Diagnosis (CAD) system can be used for long-term monitoring of the human heart. To the best of our knowledge, the proposed system is the first to incorporate deep learning for AF beat detection.
    Matched MeSH terms: Memory, Short-Term
  19. Oh SL, Ng EYK, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:278-287.
    PMID: 29903630 DOI: 10.1016/j.compbiomed.2018.06.002
    Arrhythmia is a cardiac conduction disorder characterized by irregular heartbeats. Abnormalities in the conduction system can manifest in the electrocardiographic (ECG) signal. However, it can be challenging and time-consuming to visually assess the ECG signals due to the very low amplitudes. Implementing an automated system in the clinical setting can potentially help expedite diagnosis of arrhythmia, and improve the accuracies. In this paper, we propose an automated system using a combination of convolutional neural network (CNN) and long short-term memory (LSTM) for diagnosis of normal sinus rhythm, left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature beats (APB) and premature ventricular contraction (PVC) on ECG signals. The novelty of this work is that we used ECG segments of variable length from the MIT-BIT arrhythmia physio bank database. The proposed system demonstrated high classification performance in the handling of variable-length data, achieving an accuracy of 98.10%, sensitivity of 97.50% and specificity of 98.70% using ten-fold cross validation strategy. Our proposed model can aid clinicians to detect common arrhythmias accurately on routine screening ECG.
    Matched MeSH terms: Memory, Short-Term
  20. Kuldas S, Satyen L, Ismail HN, Hashim S
    Psychol Belg, 2014 Aug 08;54(4):350-373.
    PMID: 30479408 DOI: 10.5334/pb.aw
    The capacity limitation of working memory is a widely recognised determinant of human learning. A cognitive load exceeding the capacity hampers learning. Cognitive load can be controlled by tailoring an instructional design to levels of learner prior knowledge. However, such as design does not necessarily motivate to use the available capacity for better learning. The present review examines literatures on the effects of instructional design, motivation, emotional state, and expertise level on cognitive load and cognitive effort, which ultimately affect working memory performance and learning. This examination suggests further studies on the effects of motivation and negative emotional states on the use of working memory. Prospective findings would help better explain and predict individual differences in the use of working memory for cognitive learning and task performance.
    Matched MeSH terms: Memory, Short-Term
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links