Displaying all 2 publications

Abstract:
Sort:
  1. Kunasegaran K, Ismail AMH, Ramasamy S, Gnanou JV, Caszo BA, Chen PL
    PeerJ, 2023;11:e15744.
    PMID: 37637168 DOI: 10.7717/peerj.15744
    Mental fatigue has shown to be one of the root causes of decreased productivity and overall cognitive performance, by decreasing an individual's ability to inhibit responses, process information and concentrate. The effects of mental fatigue have led to occupational errors and motorway accidents. Early detection of mental fatigue can prevent the escalation of symptoms that may lead to chronic fatigue syndrome and other disorders. To date, in clinical settings, the assessment of mental fatigue and stress is done through self-reported questionnaires. The validity of these questionnaires is questionable, as they are highly subjective measurement tools and are not immune to response biases. This review examines the wider presence of mental fatigue in the general population and critically compares its various detection techniques (i.e., self-reporting questionnaires, heart rate variability, salivary cortisol levels, electroencephalogram, and saccadic eye movements). The ability of these detection tools to assess inhibition responses (which are sensitive enough to be manifested in a fatigue state) is specifically evaluated for a reliable marker in identifying mentally fatigued individuals. In laboratory settings, antisaccade tasks have been long used to assess inhibitory control and this technique can potentially serve as the most promising assessment tool to objectively detect mental fatigue. However, more studies need to be conducted in the future to validate and correlate this assessment with other existing measures of mental fatigue detection. This review is intended for, but not limited to, mental health professionals, digital health scientists, vision researchers, and behavioral scientists.
    Matched MeSH terms: Mental Fatigue/diagnosis
  2. Su AT, Xavier G, Kuan JW
    PLoS One, 2023;18(7):e0287999.
    PMID: 37406016 DOI: 10.1371/journal.pone.0287999
    This study aimed to measure the spectral power differences in the brain rhythms among a group of hospital doctors before and after an overnight on-call duty. Thirty-two healthy doctors who performed regular on-call duty in a tertiary hospital in Sarawak, Malaysia were voluntarily recruited into this study. All participants were interviewed to collect relevant background information, followed by a self-administered questionnaire using Chalder Fatigue Scale and electroencephalogram test before and after an overnight on-call duty. The average overnight sleep duration during the on-call period was 2.2 hours (p<0.001, significantly shorter than usual sleep duration) among the participants. The mean (SD) Chalder Fatigue Scale score of the participants were 10.8 (5.3) before on-call and 18.4 (6.6) after on-call (p-value < 0.001). The theta rhythm showed significant increase in spectral power globally after an overnight on-call duty, especially when measured at eye closure. In contrast, the alpha and beta rhythms showed reduction in spectral power, significantly at temporal region, at eye closure, following an overnight on-call duty. These effects are more statistically significant when we derived the respective relative theta, alpha, and beta values. The finding of this study could be useful for development of electroencephalogram screening tool to detect mental fatigue.
    Matched MeSH terms: Mental Fatigue/diagnosis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links