Displaying all 3 publications

Abstract:
Sort:
  1. Yahya NA, Ismail Z, Embong KH, Mohamad SA
    PMID: 8629091
    High performance liquid chromatography (HPLC) with phenylisothiocyanate (PITC) is recently used for confirming the diagnosis of inborn errors of metabolism (IEM) especially amino acid disorders in Malaysian children. The method of HPLC used is a precolumn derivatization of amino acids with phenylisothiocyanate and is separated by reversed phase chromatography using 3.9 x 300 mm free amino acid columns and is detected by a UV/Vis detector. The samples are obtained from cases suspected of inborn errors of metabolism, especially of amino acid disorders, which are detected clinically by pediatricians. Initially, samples from patients suspected of inborn errors of metabolism, either urine or serum, are run on one-dimensional thin layer chromatography and supplementary chemical tests to detect the abnormal bands and associated abnormalities respectively. Positive samples are further run on HPLC to determine the specific amino acids abnormality. An examples of a case of maple syrup urine disease is discussed, based on the thin layer chromatography findings and HPLC findings.
    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors/urine; Metabolism, Inborn Errors/urine
  2. Ngu LH, Zabedah MY, Shanti B, Teh SH
    Malays J Pathol, 2008 Dec;30(2):109-14.
    PMID: 19291920 MyJurnal
    We report the biochemical profiling in two siblings with mitochondrial 2-methylacetoacetyl-CoA thiolase deficiency. Organic aciduria typical of this rare inborn error metabolism was found when the elder sibling presented with an episode of severe ketoacidosis at 20 months of age, which consisted of excessive excretion of ketones, tiglylglycine, 2-methyl-3-hydroxybutyrate, and 2-methylacetoacetate. Blood acylcarnitiness profile showed elevation of C5OH-carnitine, which represents 2-methyl-3-hydroxybutyrylcarnitine. A similar biochemical profile was identified in the younger sibling during screening although he had only mild clinical symptoms. Both patients reported a favourable outcome on follow-up.
    Matched MeSH terms: Metabolism, Inborn Errors/urine*
  3. Habib A, Md Yunus Z, Azize NA, Ch'ng GS, Ong WP, Chen BC, et al.
    Eur J Pediatr, 2013 Sep;172(9):1277-81.
    PMID: 23358709 DOI: 10.1007/s00431-013-1947-1
    Lysinuric protein intolerance (LPI; MIM 222700) is an inherited aminoaciduria with an autosomal recessive mode of inheritance. Biochemically, affected patients present with increased excretion of the cationic amino acids: lysine, arginine, and ornithine. We report the first case of LPI diagnosed in Malaysia presented with excessive excretion of homocitrulline. The patient was a 4-year-old male who presented with delayed milestones, recurrent diarrhea, and severe failure to thrive. He developed hyperammonemic coma following a forced protein-rich diet. Plasma amino acid analysis showed increased glutamine, alanine, and citrulline but decreased lysine, arginine and ornithine. Urine amino acids showed a marked excretion of lysine and ornithine together with a large peak of unknown metabolite which was subsequently identified as homocitrulline by tandem mass spectrometry. Molecular analysis confirmed a previously unreported homozygous mutation at exon 1 (235 G > A, p.Gly79Arg) in the SLC7A7 gene. This report demonstrates a novel mutation in the SLC7A7 gene in this rare inborn error of diamino acid metabolism. It also highlights the importance of early and efficient treatment of infections and dehydration in these patients.

    CONCLUSION: The diagnosis of LPI is usually not suspected by clinical findings alone, and specific laboratory investigations and molecular analysis are important to get a definitive diagnosis.

    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors/urine
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links