Displaying all 2 publications

Abstract:
Sort:
  1. Shahfiza N, Osman H, Hock TT, Abdel-Hamid AZ
    Acta Biochim. Pol., 2017;64(2):215-219.
    PMID: 28350402 DOI: 10.18388/abp.2015_1224
    BACKGROUND: Dengue is one of the major public health problems in the world, affecting more than fifty million cases in tropical and subtropical region every year. The metabolome, as pathophysiological end-points, provide significant understanding of the mechanism and progression of dengue pathogenesis via changes in the metabolite profile of infected patients. Recent developments in diagnostic technologies provide metabolomics for the early detection of infectious diseases.

    METHODS: The mid-stream urine was collected from 96 patients diagnosed with dengue fever at Penang General Hospital (PGH) and 50 healthy volunteers. Urine samples were analyzed with proton nuclear magnetic resonance (1H NMR) spectroscopy, followed by chemometric multivariate analysis. NMR signals highlighted in the orthogonal partial least square-discriminant analysis (OPLS-DA) S-plots were selected and identified using Human Metabolome Database (HMDB) and Chenomx Profiler. A highly predictive model was constructed from urine profile of dengue infected patients versus healthy individuals with the total R2Y (cum) value 0.935, and the total Q2Y (cum) value 0.832.

    RESULTS: Data showed that dengue infection is related to amino acid metabolism, tricarboxylic acid intermediates cycle and β-oxidation of fatty acids. Distinct variations in certain metabolites were recorded in infected patients including amino acids, various organic acids, betaine, valerylglycine, myo-inositol and glycine.

    CONCLUSION: Metabolomics approach provides essential insight into host metabolic disturbances following dengue infection.

    Matched MeSH terms: Metabolome/genetics*
  2. Bawadikji AA, Teh CH, Kader MABSA, Sulaiman SAS, Ibrahim B
    Curr Pharm Biotechnol, 2017;18(9):740-747.
    PMID: 29110602 DOI: 10.2174/1389201018666171103141828
    BACKGROUND: Warfarin, an anticoagulant medication, is prescribed regularly despite of its bleeding tendency for the prevention and/or treatment of various thromboembolic conditions, such as deep vein thrombosis, and complications associated with atrial fibrillation, and myocardial infarction, but because of its narrow therapeutic window, it has a lot of interactions with drugs and diet.

    METHODS: Warfarin relies on regular monitoring of International Normalized Ratio which is a standardized test to measure prothrombin time and appropriate dose adjustment. Pharmacometabonomics is a novel scientific field which deals with identification and quantification of the metabolites present in the metabolome using spectroscopic techniques such as Nuclear Magnetic Resonance (NMR). Pharmacometabonomics helps to indicate perturbation in the levels of metabolites in the cells and tissues due to drug or ingestion of any substance. NMR is one of the most widely-used spectroscopic techniques in metabolomics because of its reproducibility and speed.

    RESULTS: There are many factors that influence the metabolism of warfarin, making changes in drug dosage common, and clinical factors like drug-drug interactions, dietary interactions and age explain for the most part the variability in warfarin dosing. Some studies have showed that pharmacogenetic testing for warfarin dosing does not improve health outcomes, and around 26% of the variation in warfarin dose requirements remains unexplained yet.

    CONCLUSION: Many recent pharmacometabonomics studies have been conducted to identify novel biomarkers of drug therapies such as paracetamol, aspirin and simvastatin. Thus, a technique such as NMR based pharmacometabonomics to find novel biomarkers in plasma and urine might be useful to predict warfarin outcome.

    Matched MeSH terms: Metabolome/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links