METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured in high and low glucose concentrations. All HUVECs were treated with different concentrations of isoproterenol and propranolol for different time periods. The analytical procedures consisted of Western Blot, ELISA, DCFH-DA and TUNEL assays.
RESULTS: Isoproterenol (agonist of a beta-adrenergic receptor) significantly reduced phosphorylation at Ser-536 of NF-κB; and Ser-32 and Ser-36 of IκBα in hyperglycemic HUVECs. Isoproterenol also significantly reduced apoptosis and ROS generation. No effect of IκBα was observed on Tyr-42 phosphorylation. The effect of isoproterenol was reversed by the antagonist propranolol. We also checked if NF-κB inhibitor MG132 causes any change at the level of apoptosis. However, we observed an almost similar effect.
CONCLUSION: Given data demonstrates that beta-adrenergic receptors stimulation has a protective effect on HUVECs that might be occuring via NF-κβ and IκBα pathway.
Methods: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells.
Results: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group.
Conclusion: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.