The behavior of an individual changes from neonate to elderly due to the development of the central nervous system (CNS). One of the important components of the CNS is the cerebrospinal fluid (CSF), which bathes the brain and spinal cord. CSF has changing properties throughout life, including composition and volume imbalance. However, a specific age group that shows prevailing abnormality- corresponding behavior remains unclear. The objective of this article is to explore how such changes reflect on one's psychological as well as physical processing. Production of CSF could be affected by many factors, including its flow, absorption, volume, and composition. Prenatally, congenital malformations and infections hold the greatest risk of impacting the child's physical and mental growth. In adolescents, transmission of external substances like alcohol or drugs in the cerebrospinal fluid is known to impact severe mood changes that potentially result in suicide and depression. In the adult working population, the influence of stress levels on CSF composition causes anxiety and sleep disorders. Finally, the reduced production of CSF was found to be associated with memory deficits and Alzheimer's disease in the aging group. From the collected evidence, it can be observed that CSF played an important role in behavioral changes and may be associated with neurodegenerations. By linking the CSF abnormalities to the clinical symptoms at different stages of life, it may provide additional information in the diagnosis of diseases that are associated with neuropsychological changes.
BACKGROUND: The aim of the study is to compare the amplitude and latency of the P300 event-related potential (ERP) component between a control group and patients after mild traumatic brain injury (mTBI) during 1-7 days (short duration) and 2-3 months (long duration), and to compare the outcome of neuropsychological tests between the long duration postinjury and control study groups.
MATERIALS AND METHODS: We studied responses to auditory stimulation in two main and one subgroups, namely the control healthy group (19 patients, both ERP and neuropsychology test done), the mTBI 1 group (17 patients, only ERP done within 7 days after injury), and the mTBI 2 subgroup (the 17 mTBI 1 patients in whom a repeated ERP together with neuropsychological testing was done at 2-3 months postinjury). Auditory evoked responses were studied with two different stimuli (standard and target stimuli), where the P300 amplitude and latency were recorded from three midline sites and results were compared between the groups, as were the neuropsychological test results.
RESULTS: There was a significant prolongation of the target P300 latency values shown by the MBI 1 group measured at the central electrode when compared to the control group, which was also seen when the mTBI 1 and mTBI 2 groups were compared. The results of the P300 amplitude values measured at the frontal electrode showed the control group to have higher readings during the presentation of standard tones when compared to the mTBI 1 group. The mTBI 2 group performed better on some neuropsychological tests.
CONCLUSION: The latency of P300 was significantly prolonged in early mTBI patients who improved over time, and the neuropsychological testing on mTBI 2 patients showed them to be comparable to the control group. The study indicates that ERP should be used as an additional modality of investigation in mTBI patients.
Gut microbiomes may have a significant impact on mood and cognition, which is leading experts towards a new frontier in neuroscience. Studies have shown that increase in the amount of good bacteria in the gut can curb inflammation and cortisol level, reduces symptoms of depression and anxiety, lowers stress reactivity, improves memory and even lessens neuroticism and social anxiety. This shows that, probably the beneficial gut bacteria or probiotics function mechanistically as delivery vehicles for neuroactive compounds. Thus, a psychobiotic is a live organism, when ingested in adequate amounts, produces a health benefit in patients suffering from psychiatric illness. Study of these novel class of probiotics may open up the possibility of rearrangement of intestinal microbiota for effective management of various psychiatric disorders.