Displaying all 4 publications

Abstract:
Sort:
  1. Husain SF, Tang TB, Tam WW, Tran BX, Ho CS, Ho RC
    BMC Psychiatry, 2021 04 20;21(1):201.
    PMID: 33879125 DOI: 10.1186/s12888-021-03195-1
    BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is an emerging neuroimaging modality that provides a direct and quantitative assessment of cortical haemodynamic response during a cognitive task. It may be used to identify neurophysiological differences between psychiatric disorders with overlapping symptoms, such as bipolar disorder (BD) and borderline personality disorder (BPD). Hence, this preliminary study aimed to compare the cerebral haemodynamic function of healthy controls (HC), patients with BD and patients with BPD.

    METHODS: Twenty-seven participants (9 HCs, 9 patients with BD and 9 patients with BPD) matched for age, gender, ethnicity and education were recruited. Relative oxy-haemoglobin and deoxy-haemoglobin changes in the frontotemporal cortex was monitored with a 52-channel fNIRS system during a verbal fluency task (VFT). VFT performance, clinical history and symptom severity were also noted.

    RESULTS: Compared to HCs, both patient groups had lower mean oxy-haemoglobin in the frontotemporal cortex during the VFT. Moreover, mean oxy-haemoglobin in the left inferior frontal region is markedly lower in patients with BPD compared to patients with BD. Task performance, clinical history and symptom severity were not associated with mean oxy-haemoglobin levels.

    CONCLUSIONS: Prefrontal cortex activity is disrupted in patients with BD and BPD, but it is more extensive in BPD. These results provide further neurophysiological evidence for the separation of BPD from the bipolar spectrum. fNIRS could be a potential tool for assessing the frontal lobe function of patients who present with symptoms that are common to BD and BPD.

    Matched MeSH terms: Neurovascular Coupling*
  2. Alyan E, Saad NM, Kamel N, Rahman MA
    Appl Ergon, 2021 Oct;96:103497.
    PMID: 34139374 DOI: 10.1016/j.apergo.2021.103497
    This study aims to evaluate the effect of workstation type on the neural and vascular networks of the prefrontal cortex (PFC) underlying the cognitive activity involved during mental stress. Workstation design has been reported to affect the physical and mental health of employees. However, while the functional effects of ergonomic workstations have been documented, there is little research on the influence of workstation design on the executive function of the brain. In this study, 23 healthy volunteers in ergonomic and non-ergonomic workstations completed the Montreal imaging stress task, while their brain activity was recorded using the synchronized measurement of electroencephalography and functional near-infrared spectroscopy. The results revealed desynchronization in alpha rhythms and oxygenated hemoglobin, as well as decreased functional connectivity in the PFC networks at the non-ergonomic workstations. Additionally, a significant increase in salivary alpha-amylase activity was observed in all participants at the non-ergonomic workstations, confirming the presence of induced stress. These findings suggest that workstation design can significantly impact cognitive functioning and human capabilities at work. Therefore, the use of functional neuroimaging in workplace design can provide critical information on the causes of workplace-related stress.
    Matched MeSH terms: Neurovascular Coupling*
  3. Husain SF, Yu R, Tang TB, Tam WW, Tran B, Quek TT, et al.
    Sci Rep, 2020 06 16;10(1):9740.
    PMID: 32546704 DOI: 10.1038/s41598-020-66784-2
    Reduced haemodynamic response in the frontotemporal cortices of patients with major depressive disorder (MDD) has been demonstrated using functional near-infrared spectroscopy (fNIRS). Most notably, changes in cortical oxy-haemoglobin during a Japanese phonetic fluency task can differentiate psychiatric patients from healthy controls (HC). However, this paradigm has not been validated in the English language. Therefore, the present work aimed to distinguish patients with MDD from HCs, using haemodynamic response measured during an English letter fluency task. One hundred and five HCs and 105 patients with MDD took part in this study. NIRS signals during the verbal fluency task (VFT) was acquired using a 52-channel system, and changes in oxy-haemoglobin in the frontal and temporal regions were quantified. Depression severity, psychosocial functioning, pharmacotherapy and psychiatric history were noted. Patients with MDD had smaller changes in oxy-haemoglobin in the frontal and temporal cortices than HCs. In both regions of interest, oxy-haemoglobin was not associated with any of the clinical variables studied. 75.2% and 76.5% of patients with MDD were correctly classified using frontal and temporal region oxy-haemoglobin, respectively. Haemodynamic response measured by fNIRS during an English letter fluency task is a promising biomarker for MDD.
    Matched MeSH terms: Neurovascular Coupling/physiology*
  4. Freiria-Oliveira AH, Blanch GT, Pedrino GR, Cravo SL, Murphy D, Menani JV, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 Nov 01;309(9):R1082-91.
    PMID: 26333788 DOI: 10.1152/ajpregu.00432.2014
    Noradrenergic A2 neurons of the nucleus of the solitary tract (NTS) have been suggested to contribute to body fluid homeostasis and cardiovascular regulation. In the present study, we investigated the effects of lesions of A2 neurons of the commissural NTS (cNTS) on the c-Fos expression in neurons of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, arterial pressure, water intake, and urinary excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats (280-320 g) received an injection of anti-dopamine-β-hydroxylase-saporin (12.6 ng/60 nl; cNTS/A2-lesion, n = 28) or immunoglobulin G (IgG)-saporin (12.6 ng/60 nl; sham, n = 24) into the cNTS. The cNTS/A2 lesions increased the number of neurons expressing c-Fos in the magnocellular PVN in rats treated with hypertonic NaCl (90 ± 13, vs. sham: 47 ± 20; n = 4), without changing the number of neurons expressing c-Fos in the parvocellular PVN or in the SON. Contrary to sham rats, intragastric 2 M NaCl also increased arterial pressure in cNTS/A2-lesioned rats (16 ± 3, vs. sham: 2 ± 2 mmHg 60 min after the intragastric load; n = 9), an effect blocked by the pretreatment with the vasopressin antagonist Manning compound (0 ± 3 mmHg; n = 10). In addition, cNTS/A2 lesions enhanced hyperosmolality-induced water intake (10.5 ± 1.4, vs. sham: 7.7 ± 0.8 ml/60 min; n = 8-10), without changing renal responses to hyperosmolality. The results suggest that inhibitory mechanisms dependent on cNTS/A2 neurons reduce water intake and vasopressin-dependent pressor response to an acute increase in plasma osmolality.
    Matched MeSH terms: Neurovascular Coupling/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links