Displaying all 4 publications

Abstract:
Sort:
  1. Tan SW, Omar AR, Aini I, Yusoff K, Tan WS
    Acta Virol., 2004;48(1):23-8.
    PMID: 15230471
    A two-step SYBR Green I real time polymerase chain reaction (PCR, real time PCR) for the detection of Newcastle disease virus (NDV) was developed. A melting curve analysis was performed to distinguish specific from non-specific products and primer dimers. Regardless of different virus pathotypes the melting temperature (Tm) ranged from 86 degrees C to 87 degrees C. The sensitivity of the real time PCR was compared with the reverse transcription (RT)-nested PCR enzyme-linked immunosorbent assay (ELISA, RT-nested PCR ELISA). Whereas the detection limit of the real time PCR was 10 pg DNA, the RT-nested PCR ELISA and conventional PCR could only detect up to 1 ng and 10 ng DNA, respectively. Thus the real time PCR offers a sensitive, rapid and convenient method for screening large number of NDV specimens.
    Matched MeSH terms: Newcastle Disease/diagnosis*
  2. Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Peeters BPH, Omar AR
    Biomed Res Int, 2018;2018:7278459.
    PMID: 30175140 DOI: 10.1155/2018/7278459
    Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
    Matched MeSH terms: Newcastle Disease/diagnosis*
  3. Kho CL, Mohd-Azmi ML, Arshad SS, Yusoff K
    J Virol Methods, 2000 Apr;86(1):71-83.
    PMID: 10713378
    A sensitive and specific RT-nested PCR coupled with an ELISA detection system for detecting Newcastle disease virus is described. Two nested pairs of primer which were highly specific to all the three different pathotypes of NDV were designed from the consensus fusion gene sequence. No cross-reactions with other avian infectious agents such as infectious bronchitis virus, infectious bursal disease virus, influenza virus, and fowl pox virus were observed. Based on agarose electrophoresis detection, the RT-nested PCR was about 100 times more sensitive compared to that of a non-nested RT-PCR. To facilitate the detection of the PCR product, an ELISA detection method was then developed to detect the amplified PCR products and it was shown to be ten times more sensitive than gel electrophoresis. The efficacy of the nested PCR-ELISA was also compared with the conventional NDV detection method (HA test) and non-nested RT-PCR by testing against a total of 35 tissue specimens collected from ND-symptomatic chickens. The RT-nested PCR ELISA found NDV positive in 21 (60%) tissue specimens, while only eight (22.9%) and two (5.7%) out of 35 tissue specimens were tested NDV positive by both the non-nested RT-PCR and conventional HA test, respectively. Due to its high sensitivity for the detection of NDV from tissue specimens, this PCR-ELISA based diagnostic test may be useful for screening large number of samples.
    Matched MeSH terms: Newcastle Disease/diagnosis*
  4. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    J Virol Methods, 2009 Sep;160(1-2):149-56.
    PMID: 19447142 DOI: 10.1016/j.jviromet.2009.05.006
    SYBR Green I real-time PCR was developed for detection and differentiation of Newcastle disease virus (NDV). Primers based on the nucleocapsid (NP) gene were designed to detect specific sequence of velogenic strains and lentogenic/vaccine strains, respectively. The assay was developed and tested with NDV strains which were characterized previously. The velogenic strains were detected only by using velogenic-specific primers with a threshold cycle (C(t)) 18.19+/-3.63 and a melting temperature (T(m)) 86.0+/-0.28 degrees C. All the lentogenic/vaccine strains, in contrast, were detected only when lentogenic-specific primers were used, with the C(t) value 14.70+/-2.32 and T(m) 87.4+/-0.21 degrees C. The assay had a dynamic detection range which spans over a 5log(10) concentration range, 10(9)-10(5) copies of DNA plasmid/reaction. The velogenic and lentogenic amplifications showed high PCR efficiency of 100% and 104%, respectively. The velogenic and lentogenic amplifications were highly reproducible with assay variability 0.45+/-0.31% and 1.30+/-0.65%, respectively. The SYBR Green I real-time PCR assay detected successfully the virus from tissue samples and oral swabs collected from the velogenic and lentogenic NDV experimental infection, respectively. In addition, the assay detected and differentiated accurately NDV pathotypes from suspected field samples where the results were in good agreement with both virus isolation and analysis of the fusion (F) cleavage site sequence. The assay offers an attractive alternative method for the diagnosis of NDV.
    Matched MeSH terms: Newcastle Disease/diagnosis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links