Displaying all 6 publications

Abstract:
Sort:
  1. Tan WS, McNae IW, Ho KL, Walkinshaw MD
    PMID: 17671358
    Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20,000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 A resolution and data were collected to 99.6% completeness at 8.9 A. The crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 A. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.
    Matched MeSH terms: Nucleocapsid Proteins/chemistry*
  2. Kho CL, Tan WS, Tey BT, Yusoff K
    J Gen Virol, 2003 Aug;84(Pt 8):2163-2168.
    PMID: 12867648 DOI: 10.1099/vir.0.19107-0
    The nucleocapsid protein (NP) of Newcastle disease virus expressed in E. coli assembled as ring- and herringbone-like particles. In order to identify the contiguous NP sequence essential for assembly of these particles, 11 N- or C-terminally deleted NP mutants were constructed and their ability to self-assemble was tested. The results indicate that a large part of the NP N-terminal end, encompassing amino acids 1 to 375, is required for proper folding to form a herringbone-like structure. In contrast, the C-terminal end covering amino acids 376 to 489 was dispensable for the formation of herringbone-like particles. A region located between amino acids 375 to 439 may play a role in regulating the length of the herringbone-like particles. Mutants with amino acid deletions further from the C-terminal end (84, 98, 109 and 114 amino acids) tended to form longer particles compared to mutants with shorter deletions (25 and 49 amino acids).
    Matched MeSH terms: Nucleocapsid Proteins/chemistry*
  3. Chan YP, Koh CL, Lam SK, Wang LF
    J Gen Virol, 2004 Jun;85(Pt 6):1675-1684.
    PMID: 15166452 DOI: 10.1099/vir.0.19752-0
    Hendra virus (HeV) and Nipah virus (NiV) are members of a new genus, Henipavirus, in the family paramyxoviridae. Each virus encodes a phosphoprotein (P) that is significantly larger than its counterparts in other known paramyxoviruses. The interaction of this unusually large P with its nucleocapsid protein (N) was investigated in this study by using recombinant full-length and truncated proteins expressed in bacteria and a modified protein-blotting protein-overlay assay. Results from our group demonstrated that the N and P of both viruses were able to form not only homologous, but also heterologous, N-P complexes, i.e. HeV N was able to interact with NiV P and vice versa. Deletion analysis of the N and P revealed that there were at least two independent N-binding sites on P and they resided at the N and C termini, respectively. Similarly, more than one P-binding site was present on N and one of these was mapped to a 29 amino acid (aa) C-terminal region, which on its own was sufficient to interact with the extreme C-terminal 165 aa region of P.
    Matched MeSH terms: Nucleocapsid Proteins/chemistry*
  4. Eshaghi M, Tan WS, Yusoff K
    J Med Virol, 2005 Jan;75(1):147-52.
    PMID: 15543570
    A random peptide library of heptamers displayed on the surface of M13 bacteriophage was used to identify specific epitopes of antibodies in pooled sera of swine naturally infected by Nipah virus. The selected heptapeptides were aligned with protein sequences of Nipah virus and several putative epitopes were identified within the nucleocapsid protein. A total of 41 of 60 (68%) selected phage clones had inserts resembling a region with the sequence SNRTQGE, located at the C-terminal end (amino acids 503-509) of the nucleocapsid protein. The binding of antibodies in the swine and human antisera to the phage clone was inhibited by a synthetic peptide corresponding to this region. Epitopes identified by phage display are consistent with the predicted antigenic sites for the Nipah virus nucleocapsid protein. The selected phage clone used as a coating antigen discriminated swine and human Nipah virus sera-positive from sera-negative samples exhibiting characteristics, which might be attractive for diagnostic tests.
    Matched MeSH terms: Nucleocapsid Proteins/chemistry
  5. Tan WS, Ong ST, Eshaghi M, Foo SS, Yusoff K
    J Med Virol, 2004 May;73(1):105-12.
    PMID: 15042656
    The nucleocapsid (N) protein of Nipah virus (NiV) can be produced in three Escherichia coli strains [TOP10, BL21(DE3) and SG935] under the control of trc promoter. However, most of the product existed in the form of insoluble inclusion bodies. There was no improvement in the solubility of the product when this protein was placed under the control of T7 promoter. However, the solubility of the N protein was significantly improved by lowering the growth temperature of E. coli BL21(DE3) cell cultures. Solubility analysis of N- and C-terminally deleted mutants revealed that the full-length N protein has the highest solubility. The soluble N protein could be purified efficiently by sucrose gradient centrifugation and nickel affinity chromatography. Electron microscopic analysis of the purified product revealed that the N protein assembled into herringbone-like particles of different lengths. The C-terminal end of the N protein contains the major antigenic region when probed with antisera from humans and pigs infected naturally.
    Matched MeSH terms: Nucleocapsid Proteins/chemistry*
  6. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al.
    Virology, 2001 May 10;283(2):215-29.
    PMID: 11336547
    A search for the natural host of Nipah virus has led to the isolation of a previously unknown member of the family Paramyxoviridae. Tioman virus (TiV) was isolated from the urine of fruit bats (Pteropus hypomelanus) found on the island of the same name off the eastern coast of peninsular Malaysia. An electron microscopic study of TiV-infected cells revealed spherical and pleomorphic-enveloped viral particles (100--500 nm in size) with a single fringe of embedded peplomers. Virus morphogenesis occurred at the plasma membrane of infected cells and morphological features of negative-stained ribonucleoprotein complexes were compatible with that of viruses in the family Paramyxoviridae. Serological studies revealed no cross-reactivity with antibodies against a number of known Paramyxoviridae members except for the newly described Menangle virus (MenV), isolated in Australia in 1997. Failure of PCR amplification using MenV-specific primers suggested that this new virus is related to but different from MenV. For molecular characterization of the virus, a cDNA subtraction strategy was employed to isolate virus-specific cDNA from virus-infected cells. Complete gene sequences for the nucleocapsid protein (N) and phosphoprotein (P/V) have been determined and recombinant N and V proteins produced in baculovirus. The recombinant N and V proteins reacted with porcine anti-MenV sera in Western blot, confirming the serological cross-reactivity observed during initial virus characterization. The lack of a C protein-coding region in the P/V gene, the creation of P mRNA by insertion of 2-G residues, and the results of phylogenetic analyses all indicated that TiV is a novel member of the genus Rubulavirus.
    Matched MeSH terms: Nucleocapsid Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links