We have completely sequenced the genomes of two Nipah virus (NiV) isolates, one from the throat secretion and the other from the cerebrospinal fluid (CSF) of the sole surviving encephalitic patient with positive CSF virus isolation in Malaysia. The two genomes have 18246 nucleotides each and differ by only 4 nucleotides. The NiV genome is 12 nucleotides longer than the Hendra virus (HeV) genome and both genomes have identical leader and trailer sequence lengths and hexamer-phasing positions for all their genes. Both NiV and HeV are also very closely related with respect to their genomic end sequences, gene start and stop signals, P gene-editing signals and deduced amino acid sequences of nucleocapsid protein, phosphoprotein, matrix protein, fusion protein, glycoprotein and RNA polymerase. The existing evidence demonstrates a clear need for the creation of a new genus within the subfamily Paramyxovirinae to accommodate the close similarities between NiV and HeV and their significant differences from other members of the subfamily.
8-OxodGTP is generated by the reaction between dGTP and reactive oxygen species and a considered mutagenic nucleotide. It can be incorporated into the duplex DNA during replication processes by the DNA polymerase, and thus the repair enzyme removes oxodGTP from the nucleotide pools in living cells. On the other hand, the γ-modified triphosphates show interesting properties for use as biological tools. Therefore, the γ-N-pyrenylalkyl-oxodGTP derivatives were synthesized and their effect on the enzymatic reactions were evaluated. The γ-N-pyrenylmethyl-oxodGTP was found to be accepted by the DNA polymerase just like oxodGTP, but showed a competitive inhibition property for the human oxodGTPase.
MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.