A new species of toxic benthic dinoflagellate is described based on laboratory cultures isolated from two locations from Brazil, Rio de Janeiro and Bahia. The morphology was studied with SEM and LM. Cells are elliptical in right thecal view and flat. They are 37-44μm long and 29-36μm wide. The right thecal plate has a V shaped indentation where six platelets can be identified. The thecal surface of both thecal plates is smooth and has round or kidney shaped and uniformly distributed pores except in the central area of the cell, and a line of marginal pores. Some cells present an elongated depression on the central area of the apical part of the right thecal plate. Prorocentrum caipirignum is similar to Prorocentrum lima in its morphology, but can be differentiated by the general cell shape, being elliptical while P. lima is ovoid. In the phylogenetic trees based on ITS and LSU rDNA sequences, the P. caipirignum clade appears close to the clades of P. lima and Prorocentrum hoffmannianum. The Brazilian strains of P. caipirignum formed a clade with strains from Cuba, Hainan Island and Malaysia and it is therefore likely that this new species has a broad tropical distribution. Prorocentrum caipirignum is a toxic species that produces okadaic acid and the fast acting toxin prorocentrolide.
Globally around 24 million elderly population are dealing with dementia, and this pathological characteristic is commonly seen in people suffering from Alzheimer's disease (AD). Despite having multiple treatment options that can mitigate AD symptoms, there is an imperative call to advance our understanding of the disease pathogenesis to unfold disease-modifying treatments/therapies. To explore the driving mechanisms of AD development, we stretch out further to study time-dependant changes after Okadaic acid (OKA)-induced AD-like conditions in zebrafish. We evaluated the pharmacodynamics of OKA at two-time points, i.e., after 4-days and 10-days exposure to zebrafish. T-Maze was utilized to observe the learning and cognitive behaviour, and inflammatory gene expressions such as 5-Lox, Gfap, Actin, APP, and Mapt were performed in zebrafish brains. To scoop everything out from the brain tissue, protein profiling was performed using LCMS/MS. Both time course OKA-induced AD models have shown significant memory impairment, as evident from T-Maze. Gene expression studies of both groups have reported an overexpression of 5-Lox, GFAP, Actin, APP, and OKA 10D group has shown remarkable upregulation of Mapt in zebrafish brains. In the case of protein expression, the heatmap suggested an important role of some common proteins identified in both groups, which can be explored further to investigate their mechanism in OKA-induced AD pathology. Presently, the preclinical models available to understand AD-like conditions are not completely understood. Hence, utilizing OKA in the zebrafish model can be of great importance in understanding the pathology of AD progression and as a screening tool for drug discovery.
Protein phosphatase inhibition assay (PPIA), Neuroblastoma cell-based assay (Neuro-2a CBA) and LC-MS/MS analysis revealed for the first time the production of okadaic acid (OA) by a Prorocentrum rhathymum strain. Low amounts of OA were detected by LC-MS/MS analysis. Inhibition of PP2A activity and a weak toxicity to the Neuro-2a CBA were also observed.