Displaying all 2 publications

Abstract:
Sort:
  1. Adebiyi FA, Siraj SS, Harmin SA, Christianus A
    J Exp Zool A Ecol Genet Physiol, 2011 Nov 1;315(9):536-43.
    PMID: 21898849 DOI: 10.1002/jez.702
    Hemibagrus nemurus is a riverine catfish with high economic and nutritive values. Investigations on ovarian development of this fish were carried out to determine the mode of ovarian development and describe the oocyte developmental stages. Histological studies were done on ovaries using light microscopy and scanning electron microscopy. Fish were sampled monthly for a period of six months (August 2009 to January 2010). The mean oocyte diameter (OD) ranged from 871 ± 161.41 µm to 1,167 ± 26.77 µm and the highest OD was in November. Oocyte size-frequency distribution showed a polymodal distribution. The mean gonadosomatic index (GSI) ranged from 1.14 ± 0.87% to 7.06 ± 1.40% and highest GSI was in November. The ovaries exhibited three phases of oocyte growth, which were primary growth, secondary growth and maturation phases. Based on histological criteria, the oocyte developmental stages were divided into seven stages as chromatin nucleolar, early perinucleolar, late perinucleolar, cortical alveolar, vitellogenesis, mature oocyte and germinal vesicle migration stages. All the seven stages of oocyte development were observed in the ovaries. Oogonia were always present throughout the developmental stages. The ovaries had more than two stages of oocyte development. This is the first report on the mode of ovarian development of H. nemurus. These findings indicated that H. nemurus has asynchronous mode of ovarian development and is capable of spawning several times in a year under favourable conditions.
    Matched MeSH terms: Oocytes/growth & development*
  2. Hamdan M, Jones KT, Cheong Y, Lane SI
    Sci Rep, 2016 11 14;6:36994.
    PMID: 27841311 DOI: 10.1038/srep36994
    Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis.
    Matched MeSH terms: Oocytes/growth & development
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links