Displaying all 4 publications

Abstract:
Sort:
  1. Yusof NA, Kadir WA
    PMID: 19010723 DOI: 10.1016/j.saa.2008.07.019
    Optical test strip based on the use of Br-PADAP as a sensitive reagent immobilised into sol-gel thin film for detection of Hg(II) in aqueous solution had been thoroughly carried out. It has a square-sensing zone (1.0 cm x 1.0 cm) containing the sensitive reagent necessary to produce response to trace level of mercury. This method offer sensitivity and simplicity in detecting Hg(II) as no prior treatment or extraction is required. A linear response was attained in the Hg(II) concentration in the range of 0.5-2.5 ppm with calculated limit of detection of 6.63 ppb. This method also showed a reproducible result with relative standard deviation (R.S.D.) of 2.15% and response time of approximately 5 min. Interference studies showed that Al(III), Co(II) and Ni(II) significantly interfered during the determination. The developed sensor has been validated against Atomic Absorption Spectroscopy method and proven comparable.
    Matched MeSH terms: Optics and Photonics/instrumentation*
  2. Ahmed Taha B, Addie AJ, Saeed AQ, Haider AJ, Chaudhary V, Arsad N
    Neuroscience, 2024 Dec 06;562:106-124.
    PMID: 39490518 DOI: 10.1016/j.neuroscience.2024.10.046
    Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. The potential of this technology lies in unraveling the mysteries of neural coding principles, mapping functional connectivity in complex brain circuits, and developing new therapeutic interventions for neurological disorders. Nevertheless, achieving the full potential of nanostructured photonic neural probes requires overcoming challenges such as ensuring long-term biocompatibility, integrating nanoscale components at high density, and developing robust data-analysis pipelines. In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.
    Matched MeSH terms: Optics and Photonics/instrumentation
  3. Jalil MA, Abdolkarim A, Saktioto T, Ong CT, Yupapin PP
    Int J Nanomedicine, 2012;7:773-9.
    PMID: 22359455 DOI: 10.2147/IJN.S27625
    In this study, we have generated terahertz (THz) frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40-50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.
    Matched MeSH terms: Optics and Photonics/instrumentation*
  4. Poh AH, Adikan FRM, Moghavvemi M
    Med Biol Eng Comput, 2020 Jun;58(6):1159-1175.
    PMID: 32319030 DOI: 10.1007/s11517-019-02077-9
    The study and applications of in vivo skin optics have been openly documented as early as the year 1954, or possibly earlier. To date, challenges in analyzing the complexities of this field remain, with wide scopes requiring more scrutiny. Recent advances in spectroscopic research and multivariate analytics allow a closer look into applications potentially for detecting or monitoring diseases. One of the challenges in this field is in establishing a reference for applications which correspond to certain bandwidths. This article reviews the scope on past research on skin spectroscopy, and the clinical aspects which have or may have applications on disease detection or enhancing diagnostics. A summary is supplied on the technicalities surrounding the measurements reported in literature, focused towards the wavelength-dependent applications in themes central to the respective research. Analytics on the topology of the papers' data cited in this work is also provided for a statistical perspective. In short, this paper strives to immediately inform the reader with possible applications via the spectroscopic devices at hand. Graphical Abstract .
    Matched MeSH terms: Optics and Photonics/instrumentation
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links