We have previously isolated a novel avian Orthobunyavirus, Kedah Fatal Kidney Syndrome (KFKS) virus from a broiler farm in Kedah, Malaysia in 2020 with a severe kidney lesion in chickens. The virus was designated as KFKS2_CS virus. Sequence analysis of partial nucleocapsid (N) and nonstructural (NSs) sequence of this virus showed the highest sequence identity with previous KFKS1 from Malaysia (100%) and 97% with a zoonotic Umbre (UMB) virus, which was reported to cause encephalitis in immunocompromised humans in India. Phylogenetic analysis revealed that this virus was clustered together with previous KFKS1 virus from Malaysia, UMB and Cristoli viruses. This study aimed to assess the zoonotic potential of this KFKS2_CS virus in vitro by determining its ability to inhibit the production of interferon (IFN) in human glioblastoma multiforme (GBM) brain cells using reverse-transcriptase polymerase reaction (RT-PCR). This virus blocked the production of interferon-a in this human brain cells. In conclusion, this KFKS2_CS virus may have a zoonotic potential and become a public health concern in the future.
Lednice virus (LEDV) has been detected in Culex modestus mosquitoes in several European countries within the last six decades. In this study, phylogenetic analyses of the complete genome segments confirm that LEDV belongs to the Turlock orthobunyavirus (Orthobunyavirus, Peribunyaviridae) species and is closely related to Umbre, Turlock, and Kedah viruses.
Rodents belong to the order Rodentia, which consists of three families in Borneo (i.e., Muridae, Sciuridae and Hystricidae). These include rats, mice, squirrels, and porcupines. They are widespread throughout the world and considered pests that harm humans and livestock. Some rodent species are natural reservoirs of hantaviruses (Family: Bunyaviridae) that can cause zoonotic diseases in humans. Although hantavirus seropositive human sera were reported in Peninsular Malaysia in the early 1980s, information on their infection in rodent species in Malaysia is still lacking. The rodent populations in residential and forested areas in Sarawak were sampled. A total of 108 individuals from 15 species of rodents were collected in residential (n = 44) and forested ( n = 64) areas. The species diversity of rodents in forested areas was significantly higher (H = 2.2342) compared to rodents in residential areas (H = 0.64715) (p < 0.001 of Zar-t test based on the Shannon index). Rattus rattus and Sundamys muelleri were present at high frequencies in both localities. An enzyme-linked immunosorbent assay (ELISA) showed that hantavirus-targeting antibodies were absent from 53 tested serum samples. This is the first report of hantavirus seroprevalence surveillance in rodent populations in Sarawak, East Malaysia. The results suggested that hantavirus was not circulating in the studied rodent populations in Sarawak, or it was otherwise at a low prevalence that is below the detection threshold. It is important to remain vigilant because of the zoonotic potential of this virus and its severe disease outcome. Further studies, such as molecular detection of viral genetic materials, are needed to fully assess the risk of hantavirus infection in rodents and humans in this region of Malaysia.