Displaying all 3 publications

Abstract:
Sort:
  1. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al.
    Microbes Infect., 2002 Feb;4(2):145-51.
    PMID: 11880045
    In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.
    Matched MeSH terms: Paramyxoviridae Infections/blood
  2. Chow VT, Tambyah PA, Yeo WM, Phoon MC, Howe J
    J Clin Virol, 2000 Dec;19(3):143-7.
    PMID: 11090749
    BACKGROUND: between 1998 and 1999, an outbreak of potentially fatal viral encephalitis erupted among pig farm workers in West Malaysia, and later spread to Singapore where abattoir workers were afflicted. Although Japanese encephalitis virus was initially suspected, the predominant aetiologic agent was subsequently confirmed to be Nipah virus, a novel paramyxovirus related to but distinct from Hendra virus.

    OBJECTIVE: to describe a case of Nipah virus encephalitis in a pig farm worker from Malaysia.

    STUDY DESIGN: the clinical, laboratory and radiological findings of this patient were scrutinized. Special emphasis was placed on the electron microscopic analysis of the cerebrospinal fluid (CSF) specimen from this patient.

    RESULTS: the neurological deficits indicative of cerebellar involvement were supported by the magnetic resonance imaging that showed prominent cerebellar and brainstem lesions. CSF examination provided further evidence of viral encephalitis. Complement fixation and/or RT-PCR assays were negative for Japanese encephalitis, herpes simplex, measles and mumps viruses. ELISA for detecting IgM and IgG antibodies against Hendra viral antigens were equivocal for the CSF specimen, and tested initially negative for the first serum sample but subsequently positive for the repeat serum sample. Transmission electron microscopy of negatively-stained preparations of CSF revealed enveloped virus-like structures fringed with surface projections as well as nucleocapsids with distinctive helical and herringbone patterns, features consistent with those of other paramyxoviruses, including Hendra virus.

    CONCLUSION: this case report reiterates the relevant and feasible role of diagnostic electron microscopy for identifying and/or classifying novel or emerging viral pathogens for which sufficiently specific and sensitive tests are lacking.

    Matched MeSH terms: Paramyxoviridae Infections/blood
  3. Ali R, Mounts AW, Parashar UD, Sahani M, Lye MS, Isa MM, et al.
    Emerg Infect Dis, 2001 Jul-Aug;7(4):759-61.
    PMID: 11592256
    Matched MeSH terms: Paramyxoviridae Infections/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links