Phylogenetic, genealogical and population relationships of Chrysomya bezziana, the Old World screwworm fly (OWSF), were inferred from DNA sequences of mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and nuclear white eye colour (white), using sequences of Chrysomya megacephala and Chrysomya rufifacies as outgroups. Cyt b (717bp, 754 specimens), EF-1α (361bp, 256 specimens) and white (577bp, 242 specimens) were analysed from up to two African and nine Asian countries, including 10 Indonesian islands. We show that OWSF occurs as distinctive African and Asian lineages based on cyt b and white, and that there is a marked differentiation between Sumatran and Javan populations in Indonesia, supported by the genealogy and analysis of molecular variance of cyt b alone. Four cyt b sub-lineages are recognised in Asia: only 2.1 occurs on the Asian mainland, from Yemen to Peninsular Malaysia; only 2.2, 2.3 and 2.4 occur in central Indonesia; 2.4 predominates on New Guinea; and 2.1 co-occurs with others only on Sumatra in western Indonesia. This phylogeography and the genetic distances between cyt b haplotypes indicate pre-historic, natural dispersal of OWSF eastwards into Indonesia and other Malesian islands, followed by vicariant evolution in New Guinea and central Indonesia. OWSF is absent from Australia, where there is surveillance for importation or natural invasion. Judged by cyt b haplotype markers, there is currently little spread of OWSF across sea barriers, despite frequent shipments of Australian livestock through Indonesian seas to the Middle East Gulf region. These findings will inform plans for integrated pest management, which could be applied progressively, for example starting in East Nusa Tenggara (central Indonesia) where OWSF has regional cyt b markers, and progressing westwards to Java where any invasion from Sumatra is unlikely. Cyt b markers would help identify the source of any re-emergence in treated areas.
The objective of this study was to identify Fusarium species in the Gibberella fujikuroi species complex from rice, sugarcane and maize as most of the Fusarium species in the species complex are found on the three crops. Isolates used were collected from the field and obtained from culture collection. The Fusarium isolates were initially sorted based on morphology and identifications confirmed based on the DNA sequence of the translation elongation factor 1-α (TEF-1α) gene. Based on the closest match of BLAST analysis, five species were recovered, namely, F. sacchari, F. fujikuroi, F. proliferatum, F. andiyazi and F. verticillioides. This is the first report regarding F. andiyazi from rice in Malaysia and Southeast Asia. The phylogenetic tree generated by using the neighbor joining method showed that isolates from the same species were grouped in the same clade. The present study indicated that Fusarium species in the G. fujikuroi species complex are widespread in rice, sugarcane and maize in Peninsular Malaysia. The findings also suggest that the use of morphological characters for identification of Fusarium species in the G. fujikuroi species complex from the three crops will lead to incorrect species designation.
Nonepithelial ovarian cancer (NEOC) is a rare cancer that is often misdiagnosed as other malignant tumors. Research on this cancer using fresh tissues is nearly impossible because of its limited number of samples within a limited time provided. The study is to identify potential genes and their molecular pathways related to NEOC using formalin-fixed paraffin embedded samples. Total RNA was extracted from eight archived NEOCs and seven normal ovaries. The RNA samples with RNA integrity number >2.0, purity >1.7 and cycle count value <28 cycles were hybridized to the Illumina Whole-Genome DASL assay (cDNA-mediated annealing, selection, extension, and ligation). We analyzed the results using the GeneSpring GX11.0 and FlexArray software to determine the differentially expressed genes. Microarray results were validated using an immunohistochemistry method. Statistical analysis identified 804 differentially expressed genes with 443 and 361 genes as overexpressed and underexpressed in cancer, respectively. Consistent findings were documented for the overexpression of eukaryotic translation elongation factor 1 alpha 1, E2F transcription factor 2, and fibroblast growth factor receptor 3, except for the down-regulated gene, early growth response 1 (EGR1). The immunopositivity staining for EGR1 was found in the majority of cancer tissues. This finding suggested that the mRNA level of a transcript did not always match with the protein expression in tissues. The current gene profile can be the platform for further exploration of the molecular mechanism of NEOC.
Bud rot disease is a damaging disease of oil palm in Colombia. The pathogen responsible for this disease is a species of oomyctes, Phytophthora palmivora which is also the causal pathogen of several tropical crop diseases such as fruit rot and stem canker of cocoa, rubber, durian and jackfruit. No outbreaks of bud rot have been reported in oil palm in Malaysia or other Southeast Asian countries, despite this particular species being present in the region. Analysis of the genomic sequences of several genetic markers; the internal transcribe spacer regions (ITS) of the ribosomal RNA gene cluster, beta-tubulin gene, translation elongation factor 1 alpha gene (EF-1α), cytochrome c oxidase subunit I & II (COXI and COXII) gene cluster along with amplified fragment length polymorphism (AFLP) analyses have been carried out to investigate the genetic diversity and variation of P. palmivora isolates from around the world and from different hosts in comparison to Colombian oil palm isolates, as one of the steps in understanding why this species of oomycetes causes devastating damage to oil palm in Latin America but not in other regions. Phylogenetic analyses of these regions showed that the Colombian oil palm isolates were not separated from Malaysian isolates. AFLP analysis and a new marker PPHPAV, targeting an unclassified hypothetical protein, was found to be able to differentiate Malaysian and Colombian isolates and showed a clear clade separations. Despite this, pathogenicity studies did not show any significant differences in the level of aggressiveness of different isolates against oil palm in glasshouse tests.
The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.