Displaying all 3 publications

Abstract:
Sort:
  1. Syahirah Samsudin, Yanti Rosli Asmah Hamid
    MyJurnal
    Studies on the potential effect of EMF exposure on permeability of the blood-brain barrier (BBB) in humans are virtually absent. This study was conducted to study the effect of EMF exposure on pericytes in brain tissues and its effect on oxidative stress level in the blood through total protein and malondialdehyde (MDA). About 16 male rats (Wistar) were used and divided into two groups which were negative control and treatment group. In negative control group, the animals were placed in a solenoid without any EMF exposure for 3 hours daily for 5 days. In the treatment group, the animals were placed in a solenoid with 0.3 mT EMF exposure for the same time duration. On day 3 and day 5, animals were sacrificed and the brain was removed for histological examination while on day 1, day 3 and day 5, the blood was collected for biochemistry analysis. Histological observation showed the presence of morphological changes in the brain tissues of rats that exposed to EMF. Statistical analysis showed that there is no significant decrease in total protein (p>0.05) between negative control group and treatment group. Meanwhile, MDA level in blood showed a significant increase in treatment group (p
    Matched MeSH terms: Pericytes
  2. Anbarasen L, Lim J, Rajandram R, Mun KS, Sia SF
    PeerJ, 2019;7:e7058.
    PMID: 31275742 DOI: 10.7717/peerj.7058
    Background: Matrix metalloproteinase (MMP)-2 and -9 are Osteopontin (OPN) dependent molecules implicated in the destabilization of blood vessels. OPN and MMPs have been studied in brain arteriovenous malformation (BAVM) patients' tissues and blood samples before intervention. In this study, we compared the serum level of these markers before and after treatment, as well as assessed their protein expressions in BAVM tissues to evaluate their roles in this disease.

    Methodology: Serum samples from six BAVM patients and three control subjects were analyzed using enzyme-linked immunoabsorbent assay (ELISA) for OPN. A total of 10 BAVM patients and five control subjects were analyzed using Multiplex ELISA for MMPs. A total of 16 BAVM tissue samples and two normal brain tissue samples were analyzed using immunohistochemistry.

    Result: MMP-2 and -9 were significantly higher in the serum of BAVM patients before and after treatment than in control patients. There were no significant differences of OPN and MMP-9 serum level in BAVM patients before and after treatment. MMP-2 showed a significant elevation after the treatment. Expression of OPN, MMP-2 and -9 proteins were seen in endothelial cells, perivascular cells and brain parenchyma of BAVM tissues.

    Conclusion: Findings revealed that the level of MMP-2 and -9 in the serum correlated well with the expression in BAVM tissues in several cases. Knockdown studies will be required to determine the relationships and mechanisms of action of these markers in the near future. In addition, studies will be required to investigate the expression of these markers' potential applications as primary medical therapy targets for BAVM patients.

    Matched MeSH terms: Pericytes
  3. Maherally Z, Fillmore HL, Tan SL, Tan SF, Jassam SA, Quack FI, et al.
    FASEB J, 2018 01;32(1):168-182.
    PMID: 28883042 DOI: 10.1096/fj.201700162R
    The blood-brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins-laminin, fibronectin, collagen type IV, agrin, and perlecan-on adhesion and TEER was assessed using an electric cell-substrate impedance-sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.-Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity.
    Matched MeSH terms: Pericytes/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links