The wide use of whole-genome sequencing approach in the modern genomic era has opened a great opportunity to reveal the prospective applications of halophilic bacteria. Robertkochia marina CC-AMO-30DT is one of the halophilic bacteria that was previously taxonomically identified without any inspection on its biotechnological potential from a genomic aspect. In this study, we present the whole-genome sequence of R. marina and demonstrated the ability of this bacterium in solubilizing phosphate by producing phosphatase. The genome of R. marina has 3.57 Mbp and contains 3107 predicted genes, from which 3044 are protein coding, 52 are non-coding RNAs, and 11 are pseudogenes. Several phosphatases such as alkaline phosphatases and pyrophosphatases were mined from the genome. Further genomic study (phylogenetics, sequence analysis, and functional mechanism) and experimental data suggested that the alkaline phosphatase produced by R. marina could potentially be utilized in promoting plant growth, particularly for plants on saline-based agricultural land.
An abnormal, fast-moving 5'-nucleotide phosphodiesterase isozyme was found in 90.0% of 20 Malaysian patients with primary hepatoma and in 23.5% of 391 Malaysian patients with various malignant diseases; it was also discovered in 42.9% of 14 Malaysian and American patients with clinically active hepatitis B infection; in 16.7% of 18 healthy American blood bank donors who were positive for hepatitis B surface antigen (HBsAg); in 13.9% of 287 healthy Malaysian blood bank donors, some positive for HBsAg; and in none of 160 healthy American donors who were negative for HBsAg. A correlation of this abnormal isozyme with hepatoma and with infectious hepatitis B is clearly evident.