Displaying all 5 publications

Abstract:
Sort:
  1. Yusoff N, Abu Osman NA, Pingguan-Murphy B
    Med Eng Phys, 2011 Jul;33(6):782-8.
    PMID: 21356602 DOI: 10.1016/j.medengphy.2011.01.013
    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes.
    Matched MeSH terms: Physical Stimulation/instrumentation; Physical Stimulation/methods*
  2. Estudillo AJ, Kaufmann JM, Bindemann M, Schweinberger SR
    Eur J Neurosci, 2018 09;48(5):2259-2271.
    PMID: 30107052 DOI: 10.1111/ejn.14112
    Seeing a face being touched in spatial and temporal synchrony with the own face produces a bias in self-recognition, whereby the other face becomes more likely to be perceived as the self. The present study employed event-related potentials to explore whether this enfacement effect reflects initial face encoding, enhanced distinctiveness of the enfaced face, modified self-identity representations, or even later processing stages that are associated with the emotional processing of faces. Participants were stroked in synchrony or asynchrony with an unfamiliar face they observed on a monitor in front of them, in a situation approximating a mirror image. Subsequently, event-related potentials were recorded during the presentation of (a) a previously synchronously stimulated face, (b) an asynchronously stimulated face, (c) observers' own face, (d) filler faces, and (e) a to-be-detected target face, which required a response. Observers reported a consistent enfacement illusion after synchronous stimulation. Importantly, the synchronously stimulated face elicited more prominent N170 and P200 responses than the asynchronously stimulated face. By contrast, similar N250 and P300 responses were observed in these conditions. These results suggest that enfacement modulates early neural correlates of face encoding and facial prototypicality, rather than identity self-representations and associated emotional processes.
    Matched MeSH terms: Physical Stimulation/methods
  3. Treshi-marie Perera A, Newport R, McKenzie KJ
    Exp Brain Res, 2015 Nov;233(11):3153-61.
    PMID: 26195170 DOI: 10.1007/s00221-015-4384-8
    Research has suggested that altering the perceived shape and size of the body image significantly affects perception of somatic events. The current study investigated how multisensory illusions applied to the body altered tactile perception using the somatic signal detection task. Thirty-one healthy volunteers were asked to report the presence or absence of near-threshold tactile stimuli delivered to the index finger under three multisensory illusion conditions: stretched finger, shrunken finger and detached finger, as well as a veridical baseline condition. Both stretching and shrinking the stimulated finger enhanced correct touch detections; however, the mechanisms underlying this increase were found to be different. In contrast, the detached appearance reduced false touch reports-possibly due to reduced tactile noise, as a result of attention being directed to the tip of the finger only. These findings suggest that distorted representations of the body could have different modulatory effects on attention to touch and provide a link between perceived body representation and somatosensory decision-making.
    Matched MeSH terms: Physical Stimulation
  4. Chew NK, Tan CT, Goh KJ
    J Clin Neurosci, 2002 Sep;9(5):604-5.
    PMID: 12383430
    A 24-year-old woman presented with a 3.5-year history of paroxysmal dystonia that was precipitated by sudden movement, especially when she started to walk. It was characterised by shrugging of shoulders, flexion of the neck and thoracic spine, and stiffness of the right leg followed by falls. Each attack lasted for less than 5min. Inadequate sleep and stress were exacerbating factors. There was no similar family history. Physical examination and investigations were normal. The following manoeuvres that caused vestibular stimulation precipitated attacks: turning her head from side to side while standing still, sitting still on a rotating chair and an ice-water caloric test. She had partial responses to phenytoin and levodopa, and a good response to haloperidol. Vestibular stimulation as a precipitating factor in paroxysmal kinesigenic choreoathetosis has not been reported previously.
    Matched MeSH terms: Physical Stimulation
  5. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Omar MH, Mohd Tohid SF, et al.
    Pain Res Manag, 2018;2018:9536406.
    PMID: 29686743 DOI: 10.1155/2018/9536406
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
    Matched MeSH terms: Physical Stimulation/adverse effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links