Phytoplankton growth (μ) and grazing loss (g) rates were measured monthly by the Landry-Hassett dilution method over a 2-year period at both estuarine (Klang) and coastal water (Port Dickson) systems along the Straits of Malacca. Chlorophyll a (Chl a) concentration ranged from 0.20 to 4.47 μg L(-1) at Klang except on two occasions when Chl a spiked above 10 μg L(-1). In contrast, Chl a concentrations were relatively stable at Port Dickson (0.14 to 2.76 μg L(-1)). From the rate measurements, μ was higher (t = 2.01, df = 43, p 0.80). g ranged from 0.30 to 1.50 and 0.21 to 1.51 day(-1) at Klang and Port Dickson, respectively. In this study, grazing loss was coupled to phytoplankton growth, and the ratio of g/μ or grazing pressure which estimates the proportion of primary production grazed was 50% at Klang and lower than at Port Dickson (68%; t = 2.213, df = 36, p growth rates in a eutrophic system, i.e., Klang, were not matched by higher grazing loss, and this may have implications for the biogeochemical cycling in coastal waters.
A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
Matched MeSH terms: Phytoplankton/growth & development
In addition to monsoon-driven rainfall, the Maritime Continent (MC) is subject to heavy precipitation caused by the Madden-Julian Oscillation (MJO), a tropical convection-coupled circulation that propagates eastward from the Indian to the Pacific Ocean. This study shows that riverine runoff from MJO-driven rainfall in the western MC significantly enhances phytoplankton biomass not only in the coastal regions but as far as the nutrient-poor Banda Sea, located 1,000 km downstream of the riverine source. We present observational estimates of the chlorophyll-a concentration in the Banda Sea increasing by 20% over the winter average within an MJO life cycle. The enhancement of phytoplankton in the central Banda Sea is attributed to two coinciding MJO-triggered mechanisms: enhanced sediment loading and eastward advection of waters with high sediment and chlorophyll concentrations. Our results highlight an unexpected effect of MJO-driven rainfall on the downstream oceanic region. This finding has significant implications for the marine food chain and biogeochemical processes in the MC, given the increasing deforestation rate and projections that global warming will intensify both the frequency and strength of MJO-driven rainfall in the MC.
Matched MeSH terms: Phytoplankton/growth & development