Displaying all 4 publications

Abstract:
Sort:
  1. Zhang S, Davies JW, Hull R
    Virus Genes, 1997;15(1):61-4.
    PMID: 9354271
    Coat protein genes CP1, CP2 and CP3 of an isolate (MaP1) of rice tungro spherical virus (RTSV) from Malaysia were isolated, cloned and sequenced. Comparative analysis indicated that MaP1 isolate is closely related to the Philippine isolate.
    Matched MeSH terms: Plant Viruses/isolation & purification
  2. Saad N, Olmstead JW, Varsani A, Polston JE, Jones JB, Folimonova SY, et al.
    Viruses, 2021 Jun 18;13(6).
    PMID: 34207047 DOI: 10.3390/v13061165
    Southern highbush blueberry (interspecific hybrids of Vaccinium corymbosum L.) is cultivated near wild V. corymbosum as well as closely related species in Florida, USA. The expansion of blueberry cultivation into new areas in Florida and deployment of new cultivars containing viruses can potentially increase the diversity of viruses in wild and cultivated V. corymbosum. In this study, viral diversity in wild and cultivated blueberries (V. corymbosum) is described using a metagenomic approach. RNA viromes from V. corymbosum plants collected from six locations (two cultivated and four wild) in North Central Florida were generated by high throughput sequencing (HTS) and analyzed using a bioinformatic analysis pipeline. De novo assembled contigs obtained from viromes of both commercial and wild sites produced sequences with similarities to plant virus species from a diverse range of families (Amalgaviridae, Caulimoviridae, Endornaviridae, Ophioviridae, Phenuiviridae, and Virgaviridae). In addition, this study has enabled the identification of blueberry latent virus (BlLV) and blueberry mosaic associated ophiovirus (BlMaV) for the first time in Florida, as well as a tentative novel tepovirus (blueberry virus T) (BlVT) in blueberry. To the best of our knowledge, this is the first study that compares viral diversity in wild and cultivated blueberry using a metagenomic approach.
    Matched MeSH terms: Plant Viruses/isolation & purification*
  3. Druka A, Burns T, Zhang S, Hull R
    J Gen Virol, 1996 Aug;77 ( Pt 8):1975-83.
    PMID: 8760450
    Rice tungro spherical virus (RTSV) has an RNA genome of more than 12 kb with various features which classify it as a plant picornavirus. The capsid comprises three coat protein (CP) species, CP1, CP2 and CP3, with predicted molecular masses of 22.5, 22.0 and 33 kDa, respectively, which are cleaved from a polyprotein. In order to obtain information on the properties of these proteins, each was expressed in E. coli, purified as a fusion to the maltose-binding protein and used for raising a polyclonal antiserum. CP1, CP2 and CP3 with the expected molecular masses were detected specifically in virus preparations. CP3 is probably the major antigenic determinant on the surface of RTSV particles, as was shown by ELISA, Western blotting and immunogold electron microscopy using antisera obtained against whole virus particles and to each CP separately. In some cases, especially in crude extracts, CP3 antiserum detected several other proteins (40-42 kDa), which could be products of CP3 post-translational modification. No serological differences were detected between the three CPs from isolates from the Philippines, Thailand, Malaysia and India. The CP3-related 40-42 kDa proteins of the Indian RTSV isolate have a slightly higher electrophoretic mobility (42-44 kDa) and a different response to cellulolytic enzyme preparations, which allows them to be differentiated from south-east Asian isolates.
    Matched MeSH terms: Plant Viruses/isolation & purification
  4. Low SS, Loh HS, Boey JS, Khiew PS, Chiu WS, Tan MTT
    Biosens Bioelectron, 2017 Aug 15;94:365-373.
    PMID: 28319904 DOI: 10.1016/j.bios.2017.02.038
    An efficient electrochemical impedance genosensing platform has been constructed based on graphene/zinc oxide nanocomposite produced via a facile and green approach. Highly pristine graphene was synthesised from graphite through liquid phase sonication and then mixed with zinc acetate hexahydrate for the synthesis of graphene/zinc oxide nanocomposite by solvothermal growth. The as-synthesised graphene/zinc oxide nanocomposite was characterised with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffractometry (XRD) to evaluate its morphology, crystallinity, composition and purity. An amino-modified single stranded DNA oligonucleotide probe synthesised based on complementary Coconut Cadang-Cadang Viroid (CCCVd) RNA sequence, was covalently bonded onto the surface of graphene/zinc oxide nanocomposite by the bio-linker 1-pyrenebutyric acid N-hydroxysuccinimide ester. The hybridisation events were monitored by electrochemical impedance spectroscopy (EIS). Under optimised sensing conditions, the single stranded CCCVd RNA oligonucleotide target could be quantified in a wide range of 1.0×10-11M to 1.0×10-6 with good linearity (R =0.9927), high sensitivity with low detection limit of 4.3×10-12M. Differential pulse voltammetry (DPV) was also performed for the estimation of nucleic acid density on the graphene/zinc oxide nanocomposite-modified sensing platform. The current work demonstrates an important advancement towards the development of a sensitive detection assay for various diseases involving RNA agents such as CCCVd in the future.
    Matched MeSH terms: Plant Viruses/isolation & purification*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links