Platelet rich plasma clot- releasate (PRCR) shows significant influence on tissue regeneration in clinical trials. Although, the mechanism of PRCR effect on fibroblast differentiation has been studied on 2D culture system, a detailed investigation is needed to establish the role of PRCR in cell seeded in 3D scaffolds. Therefore, a study was conducted to evaluate the influence of PRCR in fibroblasts (DFB) differentiation and extracellular matrix formation on both 3D and 2D culture systems. Cell viability was measured using MTT assay and DFB differentiation was evaluated by determining the expression levels of nucleostamin and alpha smooth muscle actin (α-SMA), using indirect immunostaining and Western blotting. The expression levels of extracellular matrix genes (collagen-I, collagen-III, fibronectin and laminin) and focal adhesion formation gene (integrin beta-1) were measured using Real-time PCR. The PRCR at 10% showed significant effect on cells viability compared with 5% and 20% in both culture environments. The decrease in the expression levels of nucleostamin and the increase in α-SMA signify the DFB differentiation to myofibroblast-like cells that was prominently greater in 3D compared to 2D culture. In 3D culture systems, the total collage production, expression levels of the extracellular matrix gene and the focal adhesion gene were increased significantly compared to 2D culture. In conclusion, 3D culture environments enhances the proliferative and differentiation effects of PRCR on DFB, thereby potentially increases the efficacy of DFB for future tissue engineering clinical application.
Advances in tissue engineering led to the development of various tissue-engineered skin substitutes (TESS) for the treatment of skin injuries. The majority of the autologous TESS required lengthy and costly cell expansion process to fabricate. In this study, we determine the possibility of using a low density of human skin cells suspended in platelet-rich plasma (PRP)-enriched medium to promote the healing of full-thickness skin wounds. To achieve this, full-thickness wounds of size 1.767 cm2 were created at the dorsum part of nude mice and treated with keratinocytes (2 × 104 cells/cm2) and fibroblasts (3 × 104 cells/cm2) suspended in 10% PRP-enriched medium. Wound examination was conducted weekly and the animals were euthanized after 2 weeks. Gross examination showed that re-epithelialization was fastest in the PRP+cells group at both day 7 and 14, followed by the PRP group and NT group receiving no treatment. Only the PRP+cells group achieved complete wound closure by 2 weeks. Epidermal layer was presence in the central region of the wound of the PRP+cells and PRP groups but absence in the NT group. Comparison between the PRP+cells and PRP groups showed that the PRP+cells-treated wound was more mature as indicated by the presence of thinner epidermis with single cell layer thick basal keratinocytes and less cellular dermis. In summary, the combination of low cell density and diluted PRP creates a synergistic effect which expedites the healing of full-thickness wounds. This combination has the potential to be developed as a rapid wound therapy via the direct application of freshly harvested skin cells in diluted PRP.
Succinobucol is a phenolic antioxidant with anti-inflammatory and antiplatelet effects. Given the importance of oxidant stress in modulating platelet-platelet and platelet-vessel wall interactions, the aim of this study was to establish if antioxidant activity was responsible for the antiplatelet activity of succinobucol. Platelet aggregation in response to collagen and adenosine diphosphate (ADP) was studied in rabbit whole blood and platelet-rich plasma using impedance aggregometry. The effect of oxidant stress on aggregation, platelet lipid peroxides, and vascular tone was studied by incubating platelets, washed platelets or preconstricted rabbit iliac artery rings respectively with a combination of xanthine and xanthine oxidase (X/XO). To study the effect of succinobucol in vivo, anaesthetized rats were injected with up to 150 mg/kg succinobucol and aggregation measured in blood removed 15 mins later. Succinobucol (10-5-10-4M) significantly attenuated platelet aggregation to collagen and ADP in whole blood and platelet-rich plasma. X/XO significantly increased aggregation to collagen and platelet lipid peroxides and this was reversed by succinobucol. Addition of X/XO to denuded rabbit iliac arteries caused a dose-dependent relaxation which was significantly inhibited by succinobucol. In vivo administration up to 150 mg/kg had no effect on heart rate or mean arterial blood pressure but significantly inhibited platelet aggregation to collagen ex vivo. In conclusion, succinobucol displays anti-platelet activity in rabbit and rat blood and reverses the increase in platelet aggregation in response to oxidant stress.