Pleurotus pulmonarius F043, a fungus collected from tropical rain forest, was used to degrade pyrene, a four-rings polycyclic aromatic hydrocarbons (PAHs), in a mineral medium broth. A maximum degradation rate of pyrene (90 %) was occurred at pH 3 and the lowest degradation rate was found in the culture at pH 10 (2 %). More than 90 % pyrene degradation was achieved at pH ranged from 3 to 5, whereas the degradation rate significantly declined when the pH was >5. The degradation of pyrene increased from 2 to 96 % when the temperature rose from 4 to 25 °C. When the temperature was increased to 60 °C resulting the lowest degradation rate into 7 %. Among the agitation rates tested, 120 rpm was the best with 95 % degradation, followed by 100 rpm (90 %). The optimum agitation range for pyrene degradation by P. pulmonarius F043 was 100-120 rpm. Among all the concentrations tested, 0.5 % Tween 80 was the best with 98 % degradation, followed by 1 % Tween 80 (90 %). The optimum concentration of Tween 80 for pyrene degradation by P. pulmonarius F043 was 0.5-1 %. The degradation rate decreased, while the concentration of Tween 80 was increased. The metabolic product was found during degradation process through the identification of gentisic acid by TLC, UV-Spectrophotometer, and GC-MS.
The use of biomaterials or microorganisms in PAHs degradation had presented an eye-catching performance. Pleurotus eryngii is a white rot fungus, which is easily isolated from the decayed woods in the tropical rain forest, used to determine the capability to utilize naphthalene, a two-ring polycyclic aromatic hydrocarbon as source of carbon and energy. In the meantime, biotransformation of naphthalene to intermediates and other by-products during degradation was investigated in this study. Pleurotus eryngii had been incubated in liquid medium formulated with naphthalene for 14 days. The presence of metabolites of naphthalene suggests that Pleurotus eryngii begin the ring cleavage by dioxygenation on C1 and C4 position to give 1,4-naphthaquinone. 1,4-Naphthaquinone was further degraded to benzoic acid, where the proposed terepthalic acid is absent in the cultured extract. Further degradation of benzoic acid by Pleurotus eryngii shows the existence of catechol as a result of the combination of decarboxylation and hydroxylation process. Unfortunately, phthalic acid was not detected in this study. Several enzymes, including manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase are enzymes responsible for naphthalene degradation. Reduction of naphthalene and the presence of metabolites in liquid medium showed the ability of Pleurotus eryngii to utilize naphthalene as carbon source instead of a limited glucose amount.
Matched MeSH terms: Pleurotus/growth & development
The chemical composition and in vitro antioxidant activity of aqueous butanol and ethyl acetate extracts of Pleurotus sajor-caju were investigated in this study. Twenty-two compounds comprising methyl esters, hydrocarbon fatty acids, ethyl esters, and sterols were identified in ethyl acetate extracts, while cinnamic acid, nicotinamide, benzeneacetamide, and 4-hydroxybenzaldyhde were identified in butanol extracts by gas chromatography-mass spectrometry and NMR analysis. The antioxidant activity was determined by a β-carotene bleaching method, ferric reducing antioxidant power, trolox equivalent antioxidant capacity, and lipid peroxidation assays, while the total phenolic content in P. sajor-caju was assessed by Folin-Ciocalteau's method. The aqueous and butanol extracts exhibited the highest antioxidant activity, corresponding to the total phenolic content. The subfractions from the ethyl acetate extract (EP1, EP2, EP3, and EP4), however, showed moderate antioxidant activity. The regular consumption of P. sajor-caju as a part of our diet may render nutritional and nutraceuticals benefits for good health.
Matched MeSH terms: Pleurotus/growth & development
Four types of mycelial extracts were derived from the airlift liquid fermentation (ALF) of Pleurotus flabellatus, namely exopolysaccharide (EX), endopolysaccharide (EN), hot water (WE), and hot alkali (AE) extracts. Such extracts were screened for their active components and biological potential. EN proved to be most effective in inhibition of lipid peroxidation (EC50 = 1.71 ± 0.02 mg/mL) and in Cupric ion reducing antioxidant capacity (CUPRAC) assay (EC50 = 2.91 ± 0.01 mg TE/g). AE exhibited most pronounced ability to chelate ferrous ions (EC50 = 4.96 ± 0.08 mg/mL) and to scavenge ABTS radicals (EC50 = 3.36 ± 0.03 mg TE/g). β-glucans and total phenols contributed most to the chelating ability and quenching of ABTS radicals. Inhibition of lipid peroxidation correlated best with total glucans, total proteins, and β-glucans. Total proteins contributed most to CUPRAC antioxidant capacity. Antifungal effect was determined against Candida albicans ATCC 10231 (MIC: 0.019-0.625 mg/mL; MFC: 0.039-2.5 mg/mL), and towards C. albicans clinical isolate (MIC and MFC: 10.0-20.0 mg/mL). Comparison of cytotoxicity against colorectal carcinoma HCT 116 cells (IC50: 1.8 ± 0.3-24.6 ± 4.2 mg/mL) and normal lung MRC-5 fibroblasts (IC50: 17.0 ± 4.2-42.1 ± 6.1 mg/mL) showed that EN, and especially AE possess selective anticancer activity (SI values 3.41 and 9.44, respectively). Slight genotoxicity was observed only for AE and EX, indicating the low risk concerning this feature. Notable antioxidative and anticandidal activities, selective cytotoxicity against colorectal carcinoma cells, and absence/low genotoxicity pointed out that ALF-cultivated P. flabellatus mycelium could be considered as a valuable source of bioactive substances.