Displaying all 5 publications

Abstract:
Sort:
  1. Huda N, Ullah S, Wahab RA, Lani MN, Daud NHA, Shariff AHM, et al.
    BMC Res Notes, 2023 Sep 12;16(1):211.
    PMID: 37700361 DOI: 10.1186/s13104-023-06495-9
    OBJECTIVES: Pollen is a useful tool for identifying the provenance and complex ecosystems surrounding honey production in Malaysian forests. As native key pollinators in Malaysia, Apis dorsata and Heterotrigona itama forage on various plant/pollen species to collect honey. This study aims to generate a dataset that uncovers the presence of these plant/pollen species and their relative abundance in the honey of A. dorsata and H. itama. The information gathered from this study can be used to determine the geographical and botanical origin and authenticity of the honey produced by these two species.

    RESULTS: Sequence data were obtained for both A. dorsata and H. itama. The raw sequence data for A. dorsata was 5 Mb, which was assembled into 5 contigs with a size of 6,098,728 bp, an N50 of 15,534, and a GC average of 57.42. Similarly, the raw sequence data for H. itama was 6.3 Mb, which was assembled into 11 contigs with a size of 7,642,048 bp, an N50 of 17,180, and a GC average of 55.38. In the honey sample of A. dorsata, we identified five different plant/pollen species, with only one of the five species exhibiting a relative abundance of less than 1%. For H. itama, we identified seven different plant/pollen species, with only three of the species exhibiting a relative abundance of less than 1%. All of the identified plant species were native to Peninsular Malaysia, especially the East Coast area of Terengganu.

    DATA DESCRIPTION: Our data offers valuable insights into honey's geographical and botanical origin and authenticity. Metagenomic studies could help identify the plant species that honeybees forage and provide preliminary data for researchers studying the biological development of A. dorsata and H. itama. The identification of various flowers from the eDNA of honey that are known for their medicinal properties could aid in regional honey with accurate product origin labeling, which is crucial for guaranteeing product authenticity to consumers.

    Matched MeSH terms: Pollen/genetics
  2. Konuma A, Tsumura Y, Lee CT, Lee SL, Okuda T
    Mol Ecol, 2000 Nov;9(11):1843-52.
    PMID: 11091320
    Pollen flow and population genetic structure among 30 potentially flowering individuals of Neobalanocarpus heimii, a tropical emergent tree, were investigated in a lowland tropical rainforest of Malaysia using microsatellite polymorphism. The 248 offspring in the vicinity of five reproductive trees of the 30 potentially flowering trees were used in paternity analysis for pollen-flow study. Four primer pairs, developed in different species of dipterocarps, were adopted to detect microsatellite polymorphism. Based upon microsatellite polymorphism, pollen flow and seed migration were detected. Pollen-flow events of more than 400 m were observed directly, based on paternity analysis in the study plot. The estimated average mating distance of the five reproductive trees was 524 m. This result suggests that reproduction of this species is mediated by a long-distance pollinator. The haplotypes of some offspring were not compatible with the nearest reproductive tree. Thus, the results suggest that some seeds are dispersed by a seed dispersal vector. Investigation of genetic structure showed significant and negative correlation of genetic relatedness and spatial distances between the 30 potentially flowering trees, but this correlation was weak. We suggest that long-distance gene flow and seed migration are responsible for the poorly developed genetic structure of this species.
    Matched MeSH terms: Pollen/genetics
  3. Valdiani A, Talei D, Javanmard A, Tan SG, Kadir MA, Maziah M
    Gene, 2014 Jun 1;542(2):156-67.
    PMID: 24680780 DOI: 10.1016/j.gene.2014.03.039
    Andrographis paniculata Nees. (AP) is a self-pollinated medicinal herb with a wide range of pharmaceutical properties, facing a low diversity in Malaysia. Cross-pollination of AP accessions leads to considerable rates of heterosis in the agro-morphological characteristics and anticancer phytochemicals of this eminent medicinal herb. However, the poor crossability of the plant at the interpopulation or intraspecific levels is an obstacle from the evolutionary and breeding points of view as an average of 4.56% crossability was recorded for AP in this study. Hence, this research aimed to elicit the impact of parental genetic distances (GDs) on the rate of crossability of AP using seven accessions in 21 possible cross combinations. To this end, a set of 55 randomly amplified polymorphic DNA (RAPD) primers and a total of 13 agro-morphological markers were employed to test the hypothesis. Twenty-two out of the 55 RAPD primers amplified a total of 257 bands of which 107 bands were found to be polymorphic. The principal component analysis (PCA) based on the RAPD markers revealed that the studied AP accessions were distributed to three distinct groups. Furthermore, it was noticed that even a minor increase in GD between two parents can cause a decline in their crossability. Unlike, the morphological-based GDs acted neutrally to crossability. This finding suggests that, despite the low genetic diversity among the Malaysian APs, a population prescreening using RAPD markers would be useful to enhance the rate of fruit set through selecting the genetically adjacent parents.
    Matched MeSH terms: Pollen/genetics
  4. Terauchi R
    Jpn. J. Genet., 1994 Oct;69(5):567-76.
    PMID: 7999373
    Di-nucleotide microsatellites were isolated from a genomic library of a tropical tree species, Dryobalanops lanceolata, in Sarawak, for the purpose of using them as hypervariable genetic markers to study the pollen-mediated gene flow. Among 1600 recombinant clones, in total 20 clones gave positive signals when hybridized with oligonucleotides with the three different repeat motifs, GT, CA and CT. Estimations of abundance of (GT)n/(CA)n and (GA)n/(CT)n dinucleotide repeats in D. lanceolata genome revealed to be one in every 84 kb and 80 kb, respectively. Among six sequenced microsatellite loci, one was selected to synthesize PCR primers to amplify the microsatellite. PCR product size of the locus was variable among different individuals, which is attributed to the different number of di-nucleotide repeats. The same microsatellite genotype was detected in the trunk and canopy of a single large tree, indicating the utility of trunk tissue as the source of DNA for the population genetic study of tropical tree species, the canopy of which is usually difficult to approach.
    Matched MeSH terms: Pollen/genetics
  5. Kondo T, Nishimura S, Tani N, Ng KK, Lee SL, Muhammad N, et al.
    Am J Bot, 2016 Nov;103(11):1912-1920.
    PMID: 27797714
    PREMISE OF THE STUDY: In tropical rainforests of Southeast Asia, a highly fecund thrips (Thrips spp.) responds rapidly to the mass flowering at multiple-year intervals characteristic of certain species such as the canopy tree studied here, Shorea acuminata, by feeding on flower resources. However, past DNA analyses of pollen adherent to thrips bodies revealed that the thrips promoted a very high level of self-pollination. Here, we identified the pollinator that contributes to cross-pollination and discuss ways that the pollination system has adapted to mass flowering.

    METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.

    KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.

    CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.

    Matched MeSH terms: Pollen/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links