A central composite design (CCD) was employed to optimize the biosorption of Pb(II) ions onto immobilized cells of Pycnoporus sanguineus. The independent variables were initial Pb(II) concentration, pH and biomass loading. The combined effects of these variables were analyzed by response surface methodology (RSM) using quadratic model for predicting the optimum point. Under these conditions the model predicted a maximum of 97.7% of Pb(II) ions removal at pH 4, 200mg/L of initial Pb(II) concentration with 10g/L of biosorbent. The experimental values are in good agreement with predicted values within +0.10 to +0.81% error.
Biosorption of cadmium (II) ions from aqueous solution onto immobilized cells of Pycnoporus sanguineus (P. sanguineus) was investigated in a batch system. Equilibrium and kinetic studies were conducted by considering the effect of pH, initial cadmium (II) concentration, biomass loading and temperature. Results showed that the uptake of cadmium (II) ions increased with the increase of initial cadmium (II) concentration, pH and temperature. Langmuir, Freundlich and Redlich-Peterson isotherm models were used to analyze the equilibrium data at different temperatures. Langmuir isotherm model described the experimental data well followed by Redlich-Peterson and Freundlich isotherm models. Biosorption kinetics data were fitted using pseudo-first, pseudo-second-order and intraparticle diffusion. It was found that the kinetics data fitted well the pseudo-second-order followed by intraparticle diffusion. Thermodynamic parameters such as standard Gibbs free energy (Delta G0), standard enthalpy (Delta H0) and standard entropy (Delta S0) were evaluated. The result showed that biosorption of cadmium (II) ions onto immobilized cells of P. sanguineus was spontaneous and endothermic nature.