Because durian (Durio zibethinus), which is known in Southeast Asia as "the king of fruits", is thought to have special body-warming properties, it should not be consumed with paracetamol due to a risk of toxic effects. The claim of warming properties, however, has not been scientifically proven. This study was conducted to investigate durian's hyperthermic effect and its toxicity when consumed together with paracetamol in rats. Five groups of rats (n=6) were fed with: 1) distilled water (4 ml/250 g), 2) homogenized durian (4 g/250 g), 3) paracetamol solution (2400 mg/kg), 4) durian (4 g/250 g) followed by paracetamol solution (2400 mg/kg), or 5) prazosin solution (15 mg/kg, pregavaged) followed 1 h later by durian (4 g/250 g) and paracetamol solution (2400 mg/kg). Rectal temperature, systolic blood pressure and serum alanine aminotransferase (ALT) levels were taken from each rat at baseline and after the various administrations at 1, 2 and 5 h. Our results showed that the body temperature of rats in the durian-treated group was not significantly elevated when compared to the control. However, there was a significant decrease in body temperature over time in animals from groups 4 and 5. We did not, however, observe a consistent pattern of blood pressure change. Serum chemical analysis for ALT also did not show any significant change in any of the groups. In conclusion, contrary to what some believe, even though durian was found to increase body temperature in some rats, this increment was not significant. Rats receiving the durian-paracetamol combination showed a significant drop in body temperature, which may explain the belief that the two mixtures are toxic. However, the exact mechanism of toxicity is still unknown.
BACKGROUND: In our previous study, the aqueous extract of Channa striatus (family: Channidae) fillet (AECSF) showed an antidepressant-like effect in mice. However, the mechanism of the antidepressant-like effect is unknown.
AIM: The objective of this study was to explore the involvement of monoamines in the antidepressant-like effect of AECSF in mice.
MATERIALS AND METHODS: AECSF was prepared by steaming the fillets of C. striatus. The male ICR mice were pretreated with various monoaminergic antagonists viz., p-chlorophenylalanine (100 mg/kg, i.p.), prazosin (1 mg/kg, i.p.) and yohimbine (1 mg/kg, i.p.), SCH23390 (0.05 mg/kg, s.c.) and sulpiride (50 mg/kg, i.p.) followed by treatment with AECSF and tested in tail suspension test (TST). Two-way ANOVA with Tukey test were used at p < 0.05 for significance.
RESULTS: The pretreatments with p-chlorophenylalanine, prazosin and yohimbine, but not with SCH23390 and sulpiride, were able to reverse the antidepressant-like effect of AECSF in TST.
CONCLUSIONS: The antidepressant-like effect of AECSF may be mediated through the serotonergic and noradrenergic systems and not through the dopaminergic system.