Displaying all 3 publications

Abstract:
Sort:
  1. Chua LL, Rajasuriar R, Lim YAL, Woo YL, Loke P, Ariffin H
    BMC Cancer, 2020 Feb 24;20(1):151.
    PMID: 32093640 DOI: 10.1186/s12885-020-6654-5
    BACKGROUND: Alteration in gut microbiota has been recently linked with childhood leukemia and the use of chemotherapy. Whether the perturbed microbiota community is restored after disease remission and cessation of cancer treatment has not been evaluated. This study examines the chronological changes of gut microbiota in children with acute lymphoblastic leukemia (ALL) prior to the start-, during-, and following cessation of chemotherapy.

    METHODOLOGY: We conducted a longitudinal observational study in gut microbiota profile in a group of paediatric patients diagnosed with ALL using 16 s ribosomal RNA sequencing and compared these patients' microbiota pattern with age and ethnicity-matched healthy children. Temporal changes of gut microbiota in these patients with ALL were also examined at different time-points in relation to chemotherapy.

    RESULTS: Prior to commencement of chemotherapy, gut microbiota in children with ALL had larger inter-individual variability compared to healthy controls and was enriched with bacteria belonging to Bacteroidetes phylum and Bacteroides genus. The relative abundance of Bacteroides decreased upon commencement of chemotherapy. Restitution of gut microbiota composition to resemble that of healthy controls occurred after cessation of chemotherapy. However, the microbiota composition (beta diversity) remained distinctive and a few bacteria were different in abundance among the patients with ALL compared to controls despite completion of chemotherapy and presumed restoration of normal health.

    CONCLUSION: Our findings in this pilot study is the first to suggest that gut microbiota profile in children with ALL remains marginally different from healthy controls even after cessation of chemotherapy. These persistent microbiota changes may have a role in the long-term wellbeing in childhood cancer survivors but the impact of these changes in subsequent health perturbations in these survivors remain unexplored.

    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma/microbiology*
  2. Muda Z, Ibrahim H, Abdulrahman EJ, Menon BS, Zahari Z, Zaleha AM, et al.
    Med J Malaysia, 2008 Dec;63(5):415-6.
    PMID: 19803305 MyJurnal
    Invasive aspergillosis predominantly occurs in immunocompromised patients and is often resistant to different therapeutically strategies. However, mortality significantly increases if the central nervous system is affected. In this report we describe two cases of invasive aspergilosis, one with kidney involvement with a successful treatment while the other with pulmonary and cerebral involvement with a grave outcome.
    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma/microbiology*
  3. Chua LL, Rajasuriar R, Azanan MS, Abdullah NK, Tang MS, Lee SC, et al.
    Microbiome, 2017 03 20;5(1):35.
    PMID: 28320465 DOI: 10.1186/s40168-017-0250-1
    BACKGROUND: Adult survivors of childhood cancers such as acute lymphoblastic leukemia (ALL) have health problems that persist or develop years after cessation of therapy. These late effects include chronic inflammation-related comorbidities such as obesity and type 2 diabetes, but the underlying cause is poorly understood.

    RESULTS: We compared the anal microbiota composition of adult survivors of childhood ALL (N = 73) with healthy control subjects (N = 61). We identified an altered community with reduced microbial diversity in cancer survivors, who also exhibit signs of immune dysregulation including increased T cell activation and chronic inflammation. The bacterial community among cancer survivors was enriched for Actinobacteria (e.g. genus Corynebacterium) and depleted of Faecalibacterium, correlating with plasma concentrations of IL-6 and CRP and HLA-DR+CD4+ and HLA-DR+CD8+ T cells, which are established markers of inflammation and immune activation.

    CONCLUSIONS: We demonstrated a relationship between microbial dysbiosis and immune dysregulation in adult ALL survivors. These observations suggest that interventions that could restore microbial diversity may ameliorate chronic inflammation and, consequently, development of late effects of childhood cancer survivors.

    Matched MeSH terms: Precursor Cell Lymphoblastic Leukemia-Lymphoma/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links