This study aims to investigate the generalizability of the semi-metric analysis of the functional connectivity (FC) for functional near-infrared spectroscopy (fNIRS) by applying it to detect the dichotomy in differential FC under affective and neutral emotional states in nursing students and registered nurses during decision making. The proposed method employs wavelet transform coherence to construct FC networks and explores semi-metric analysis to extract network redundancy features, which has not been considered in conventional fNIRS-based FC analyses. The trials of the proposed method were performed on 19 nursing students and 19 registered nurses via a decision-making task under different emotional states induced by affective and neutral emotional stimuli. The cognitive activities were recorded using fNIRS, and the emotional stimuli were adopted from the International Affective Digitized Sound System (IADS). The induction of emotional effects was validated by heart rate variability (HRV) analysis. The experimental results by the proposed method showed significant difference (FDR-adjusted p = 0.004) in the nursing students' cognitive FC network under the two different emotional conditions, and the semi-metric percentage (SMP) of the right prefrontal cortex (PFC) was found to be significantly higher than the left PFC (FDR-adjusted p = 0.036). The benchmark method (a typical weighted graph theory analysis) gave no significant results. In essence, the results support that the semi-metric analysis can be generalized and extended to fNIRS-based functional connectivity estimation.
The present study examined the impact of white noise on word recall performance and brain activity in 40 healthy adolescents, split in two groups (normal and low) depending on their auditory working memory capacity (AWMC). Using functional magnetic resonance imaging, participants performed a backward recall task under four different signal-to-noise ratio (SNR) conditions: 15, 10, 5, and 0-dB SNR. Behaviorally, normal AWMC individuals scored significantly higher than low AWMC individuals across noise levels. Whole-brain analyses showed brain activation not to be statistically different between groups across noise levels. In the normal group, a significant positive relationship was found between performance and number of activated voxels in the right superior frontal gyrus. In the low group, significant positive correlations were found between performance and number of activated voxels in left superior frontal gyrus, left inferior frontal gyrus, and left anterior cingulate cortex. These findings suggest that the strategic structure involved in the enhancement of AWM performance may differ in normal and low AWMC individuals.
We have recently shown that age-dependent regional brain atrophy and lateral ventricle expansion may be linked with impaired cognitive and locomotor functions. However, metabolic profile transformation in different brain regions during aging is unknown. This study examined metabolic changes in the hippocampus, medial prefrontal cortex (mPFC) and striatum of middle- and late-aged Sprague-Dawley rats using ultrahigh performance liquid chromatography coupled with high-resolution accurate mass-orbitrap tandem mass spectrometry. Thirty-eight potential metabolites were altered in hippocampus, 29 in mPFC, and 14 in striatum. These alterations indicated that regional metabolic mechanisms in lated-aged rats are related to multiple pathways including glutathione, sphingolipid, tyrosine, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms in aging and provide insight for aging and health span.