Displaying all 2 publications

Abstract:
Sort:
  1. Rouhollahi E, Moghadamtousi SZ, Hamdi OA, Fadaeinasab M, Hajrezaie M, Awang K, et al.
    PMID: 25283308 DOI: 10.1186/1472-6882-14-378
    Curcuma purpurascens BI. is a medicinal plant from the Zingiberaceae family, which is widely used as a spice and as folk medicine. The aim of the present study is to investigate the gastroprotective activity of C. purpurascens rhizome hexane extract (CPRHE) against ethanol- induced gastric ulcers in rats.
    Matched MeSH terms: Protective Agents/toxicity*
  2. Golbabapour S, Hajrezaie M, Hassandarvish P, Abdul Majid N, Hadi AH, Nordin N, et al.
    Biomed Res Int, 2013;2013:974185.
    PMID: 23781513 DOI: 10.1155/2013/974185
    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions.
    Matched MeSH terms: Protective Agents/toxicity*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links