Displaying all 3 publications

Abstract:
Sort:
  1. Suwito H, Jumina, Mustofa, Pudjiastuti P, Fanani MZ, Kimata-Ariga Y, et al.
    Molecules, 2014 Dec 19;19(12):21473-88.
    PMID: 25532844 DOI: 10.3390/molecules191221473
    Some chalcones have been designed and synthesized using Claisen-Schmidt reactions as inhibitors of the ferredoxin and ferredoxin-NADP+ reductase interaction to pursue a new selective antimalaria agent. The synthesized compounds exhibited inhibition interactions between PfFd-PfFNR in the range of 10.94%-50%. The three strongest inhibition activities were shown by (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (50%), (E)-1-(4-aminophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one (38.16%), and (E)-1-(4-aminophenyl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one (31.58%). From the docking experiments we established that the amino group of the methoxyamino chlacone derivatives plays an important role in the inhibition activity by electrostatic interaction through salt bridges and that it forms more stable and better affinity complexes with FNR than with Fd.
    Matched MeSH terms: Protozoan Proteins/antagonists & inhibitors*
  2. Shrivastava AK, Kumar S, Sahu PS, Mahapatra RK
    Parasitol Res, 2017 May;116(5):1533-1544.
    PMID: 28389892 DOI: 10.1007/s00436-017-5430-1
    Computational approaches to predict structure/function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are ineffective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical protein (TU502HP) in the C. hominis genome from the CryptoDB database. A three-dimensional model of the protein was generated using the Iterative Threading ASSEmbly Refinement server through an iterative threading method. Functional annotation and phylogenetic study of TU502HP protein revealed similarity with human transportin 3. The model is further subjected to a virtual screening study form the ZINC database compound library using the Dock Blaster server. A docking study through AutoDock software reported N-(3-chlorobenzyl)ethane-1,2-diamine as the best inhibitor in terms of docking score and binding energy. The reliability of the binding mode of the inhibitor is confirmed by a complex molecular dynamics simulation study using GROMACS software for 10 ns in the water environment. Furthermore, antigenic determinants of the protein were determined with the help of DNASTAR software. Our findings report a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for treatment and prophylaxis of cryptosporidiosis among humans and animals.
    Matched MeSH terms: Protozoan Proteins/antagonists & inhibitors*
  3. Mphahlele MJ, Mmonwa MM, Choong YS
    Molecules, 2017 Jul 02;22(7).
    PMID: 28671598 DOI: 10.3390/molecules22071099
    A series of novel N-((2,5-diaryl-3-trifluoroacetyl)-1H-indol-7-yl)acetamides has been prepared via a successive and one-pot reaction sequence involving initial trifluoroacetic acid-mediated Beckmann rearrangement of the oximes derived from the 1-(2,5-diaryl-1H-indol-7-yl)ethanones, followed by trifluoroacetylation of the incipient N-(2,5-diaryl-1H-indol-7-yl)-acetamides with trifluoroacetic anhydride. The prepared compounds were evaluated for potential in vitro antiplasmodial properties. Preliminary results from antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum revealed that a combination of 2-(4-flurophenyl)- and 5-(4-fluorophenyl) or 2-(4-flurophenyl)- and 4-fluorostyryl groups in compounds 3(a,f) and 4(a,g), for example, is required for biological activity for both series of compounds. Their possible mode of action against the plasmodial parasite is explained theoretically through molecular docking of the most active compounds against the parasite lactate dehydrogenase (pLDH). These compounds were docked at the entrance of NAD+ in pLDH presumably hindering entry of lactate to cause the observed inhibition effect of pLDH. The four compounds were found to exhibit low toxicity against monkey kidney Vero cells at the highest concentrations tested.
    Matched MeSH terms: Protozoan Proteins/antagonists & inhibitors
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links