Infection control and wound healing profiles of sodium carboxymethylcellulose (SCMC) films were investigated as a function of their anti-bacterial action, physical structures, polymer molecular weights and carboxymethyl substitution degrees. The films were prepared with in vitro polymer/film and in vivo microbe-colonized wound healing/systemic infection profiles examined. Adhesive high carboxymethyl substituted SCMC films aided healing via attaching to microbes and removing them from wound. Pseudomonas aeruginosa was removed via encapsulating in gelling low molecular weight SCMC film, whereas Staphylococcus aureus was trapped in tight folds of high molecular weight SCMC film. Incomplete microbe removal from wound did not necessary translate to inability to heal as microbe remnant at wound induced fibroblast migration and aided tissue reconstruction. Using no film nonetheless will cause systemic blood infection. SCMC films negate infection and promote wound healing via specific polymer-microbe adhesion, and removal of S. aureus and P. aeruginosa requires films of different polymer characteristics.
Matched MeSH terms: Pseudomonas Infections/prevention & control
BACKGROUND AND PURPOSE: Pseudomonas aeruginosa is an important cause of morbidity and mortality in hospitalized, critically ill patients and patients with underlying medical conditions such as cystic fibrosis, neutropenia, and iatrogenic immunosuppression. The prevalence of multiresistant P. aeruginosa isolates has been increasing. The aim of this study was to determine the antimicrobial susceptibility patterns in P. aeruginosa strains isolated at a university teaching hospital in Kuala Lumpur, Malaysia.
METHODS: The Laboratory Information System of the microbiology department was retrospectively reviewed to determine the susceptibility patterns of P. aeruginosa isolates to anti-pseudomonal antibiotics, from January to June 2005. Disk diffusion methods were employed and results were interpreted according to National Committee for Clinical Laboratory Standards guidelines.
RESULTS: 505 clinical isolates of P. aeruginosa were tested. Major sources of these isolates included respiratory tract, wound, urine and blood. The rates of antimicrobial resistance of isolates were 6.73% to amikacin, 12.9% to gentamicin, 10.1% to netilmicin, 10.9% to ceftazidime, 11.3% to ciprofloxacin, 9.9% to imipenem, 10.8% to piperacillin, 9.4% to piperacillin-tazobactam and 0% to polymyxin B. Of the 505 isolates, 29 (5.74%) were found to be multidrug-resistant; these were most commonly isolated from respiratory tract specimens of patients in surgical units, followed by respiratory tract specimens in patients in medical units.
CONCLUSIONS: The data in this study showed low rates of antibiotic resistance among P. aeruginosa isolates. Combinations of aminoglycosides plus beta-lactams or quinolones should be the appropriate choice for empirical therapy in P. aeruginosa infections. Active antibiotic susceptibility testing and surveillance should be continued in order to curtail the problem of antibiotic resistance.