Displaying all 2 publications

Abstract:
Sort:
  1. Lai MY, Ooi CH, Lau YL
    Malar J, 2021 Mar 25;20(1):166.
    PMID: 33766038 DOI: 10.1186/s12936-021-03707-0
    BACKGROUND: As an alternative to PCR methods, LAMP is increasingly being used in the field of molecular diagnostics. Under isothermal conditions at 65 °C, the entire procedure takes approximately 30 min to complete. In this study, we establish a sensitive and visualized LAMP method in a closed-tube system for the detection of Plasmodium knowlesi.

    METHODS: A total of 71 malaria microscopy positive blood samples collected in blood spots were obtained from the Sarawak State Health Department. Using 18s rRNA as the target gene, nested PCR and SYBR green I LAMP assay were performed following the DNA extraction. The colour changes of LAMP end products were observed by naked eyes.

    RESULTS: LAMP assay demonstrated a detection limit of 10 copies/µL in comparison with 100 copies/µL nested PCR. Of 71 P. knowlesi blood samples collected, LAMP detected 69 microscopy-positive samples. LAMP exhibited higher sensitivity than nested PCR assay. The SYBR green I LAMP assay was 97.1% sensitive (95% CI 90.2-99.7%) and 100% specific (95% CI 83.2-100%). Without opening the cap, incorporation of SYBR green I into the inner cap of the tube enabled the direct visualization of results upon completion of amplification. The positives instantaneously turned green while the negatives remained orange.

    CONCLUSIONS: These results indicate that SYBR green I LAMP assay is a convenient diagnosis tool for the detection of P. knowlesi in remote settings.

    Matched MeSH terms: RNA, Protozoan/analysis
  2. Richard RL, Ithoi I, Abd Majid MA, Wan Sulaiman WY, Tan TC, Nissapatorn V, et al.
    PMID: 27367710 DOI: 10.3390/ijerph13070641
    The occurrence of waterborne parasites coupled with water parameters at various processing sites of two drinking water treatment plants (A and B) and seven distribution system (DS) sites in Sarawak, Malaysia were studied. Ten liters of water underwent immunomagnetic separation (IMS) technique to detect the presence of Giardia and Cryptosporidium (oo)cysts. The remaining supernatant was used to detect other parasites whilst 50 mL of water sample was each used in the detection of free-living amoebae and fecal coliforms. Sampled water was positive for Giardia (32.9%; 28/85), Cryptosporidium (18.8%; 16/85) followed by Spirometra ova-like (25.9%; 22/85), Blastocystis-like (25.9%; 22/85), nematode larvae-like (8.2%; 7/85) and Taenia ova-like (1.2%; 1/85). Meanwhile, 90.2% (55/61) samples were positive for Acanthamoeba and Naegleria via cultivation and of these, 11 isolates were confirmed as Acanthamoeba genotype T3 (5/7) and T4 (2/7) followed by Naegleria sp. (4/11), Naegleria italica (2/11), Naegleria australiensis (1/11), Naegleria angularis (1/11) and Vahlkampfia sp. (3/11). Cryptosporidium, Acanthamoeba and Naegleria were also detected in one of the seven tested DS sites. Only Giardia and Cryptosporidium showed significant correlations with fluoride and fecal coliforms. These results describe the occurrence of waterborne parasites that will assist key stakeholders in mitigating contamination at the specific sites.
    Matched MeSH terms: RNA, Protozoan/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links