Displaying all 3 publications

Abstract:
Sort:
  1. Rao GJ
    Asian Pac J Allergy Immunol, 2000 Sep;18(3):169-71.
    PMID: 11270474
    Lecithin, a major surface active substance of the surfactant system of the lung, was estimated in broncho-alveolar lavage (BAL) fluid in four groups of healthy adult male albino rats. Rats from group I were not administered any drug and acted as controls. Group II were administered histamine diphosphate. Group III were given H1 blocker (pyrilamine maleate) followed by histamine diphosphate. Group IV received H2 blocker (ranitidine hydrochloride) followed by histamine diphosphate. Lecithin content of BAL fluid in the control group was compared with that in the other three groups. A significant decrease in lecithin content was observed in the rats that received either histamine diphosphate or H1 blocker followed by histamine diphosphate. However, compared to control rats no significant difference in lecithin content was seen in rats that received H2 blocker followed by histamine diphosphate. The results clearly indicate that the decrease in surface active lecithin content in BAL fluid following administration of histamine diphosphate was unaffected by prior administration of H1 blocker, but was blocked by prior administration of H2 blocker. It was concluded that histamine induced decrease in lecithin content of BAL fluid is mediated through H2 receptors. Since the predominant source of intra-alveolar lecithin are Type II cells of the alveolar epithelium, It is possible that Type II cells have H2 receptors, stimulation of which resulted in decreased intraalveolar lecithin.
    Matched MeSH terms: Receptors, Histamine H2/metabolism*
  2. Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K
    Molecules, 2021 Jan 28;26(3).
    PMID: 33525733 DOI: 10.3390/molecules26030695
    Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae) is a medicinal plant that is commonly used to treat diseases such as asthma, diabetes, and anemia. This study aimed to examine the antiallergic activity of P. amarus extract and its compounds. The antiallergic activity was determined by measuring the concentration of allergy markers release from rat basophilic leukemia (RBL-2H3) cells with ketotifen fumarate as the positive control. As a result, P. amarus did not stabilize mast cell degranulation but exhibited antihistamine activity. The antihistamine activity was evaluated by conducting a competition radioligand binding assay on the histamine 1 receptor (H1R). Four compounds were identified from the high performance liquid chromatography (HPLC) analysis which were phyllanthin (1), hypophyllanthin (2), niranthin (3), and corilagin (4). To gain insights into the binding interactions of the most active compound hypophyllanthin (2), molecular docking was conducted and found that hypophyllanthin (2) exhibited favorable binding in the H1R binding site. In conclusion, P. amarus and hypophyllanthin (2) could potentially exhibit antiallergic activity by preventing the activation of the H1 receptor.
    Matched MeSH terms: Receptors, Histamine/metabolism
  3. Wang XY, Lim-Jurado M, Prepageran N, Tantilipikorn P, Wang de Y
    Ther Clin Risk Manag, 2016;12:585-97.
    PMID: 27110120 DOI: 10.2147/TCRM.S105189
    Allergic rhinitis and urticaria are common allergic diseases that may have a major negative impact on patients' quality of life. Bilastine, a novel new-generation antihistamine that is highly selective for the H1 histamine receptor, has a rapid onset and prolonged duration of action. This agent does not interact with the cytochrome P450 system and does not undergo significant metabolism in humans, suggesting that it has very low potential for drug-drug interactions, and does not require dose adjustment in renal impairment. As bilastine is not metabolized and is excreted largely unchanged, hepatic impairment is not expected to increase systemic exposure above the drug's safety margin. Bilastine has demonstrated similar efficacy to cetirizine and desloratadine in patients with seasonal allergic rhinitis and, in a Vienna Chamber study, a potentially longer duration of action than fexofenadine in patients with asymptomatic seasonal allergic rhinitis. It has also shown significant efficacy (similar to that of cetirizine) and safety in the long-term treatment of perennial allergic rhinitis. Bilastine showed similar efficacy to levocetirizine in patients with chronic spontaneous urticaria and can be safely used at doses of up to fourfold higher than standard dosage (80 mg once daily). The fourfold higher than standard dose is specified as an acceptable second-line treatment option for urticaria in international guidelines. Bilastine is generally well tolerated, both at standard and at supratherapeutic doses, appears to have less sedative potential than other second-generation antihistamines, and has no cardiotoxicity. Based on its pharmacokinetic properties, efficacy, and tolerability profile, bilastine will be valuable in the management of allergic rhinitis and urticaria.
    Matched MeSH terms: Receptors, Histamine
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links