Displaying all 4 publications

Abstract:
Sort:
  1. Bakrin IH, Hussain FA, Tuan Sharif SE
    Malays J Pathol, 2016 Aug;38(2):117-22.
    PMID: 27568668 MyJurnal
    Synovial sarcoma (SS) is a malignant soft tissue tumour of uncertain histogenesis which is defined by the translocation t(X;18) that produces the fusion oncogenes SYT-SSX. The emergence of transducer-like enhancer of split 1 (TLE1) as a new immunohistochemical (IHC) marker for SS has offered an alternative to pathologists in differentiating SS from other histological mimics, especially in the setting of limited molecular facilities. We investigated the utility of IHC TLE1 expression against histomorphological features and other IHC markers in SS and non-SS tumours. Twenty-six cases of histologically diagnosed SS and 7 non-SS (for which SS was in the differential diagnosis) were subjected to TLE1 IHC staining, which was graded from 0 to 3+. Of the 26 SS cases, 12 each were biphasic and monophasic types and 2 were poorly-differentiated. TLE1 was expressed in 22/26 (84.6%) SS cases, of which 11/12 (91.7%) were biphasic, 10/12 (83.3%) monophasic and 1/2 (50%) poorly-differentiated tumours. Two of 7 (28.6%) non-SS cases were positive for TLE1. Immunopositivity of SS and non-SS cases for EMA were 20/26 (76.9%) and 2/7 (28.6%) respectively and for CK7 were 7/26 (26.9%) and 0/7 (0%) respectively. All cases were negative for CD34. Consistent histomorphological features for SS included mild nuclear pleomorphism, alternating tumour cellularity, fascicular growth pattern and thick ropy stromal collagen. In conclusion, TLE1 is not a stand-alone diagnostic IHC marker for SS. However, in the absence of molecular studies, it can contribute added diagnostic value in combination with morphological evaluation and other IHC markers such as EMA and CD34.
    Matched MeSH terms: Repressor Proteins/biosynthesis*
  2. Kong YH, Syed Zanaruddin SN, Lau SH, Ramanathan A, Kallarakkal TG, Vincent-Chong VK, et al.
    PLoS One, 2015;10(7):e0134045.
    PMID: 26214683 DOI: 10.1371/journal.pone.0134045
    Oral squamous cell carcinoma (OSCC) is an aggressive disease accounting for more than 260,000 cancer cases diagnosed and 128,000 deaths worldwide. A large majority of cancer deaths result from cancers that have metastasized beyond the primary tumor. The relationship between genetic changes and clinical outcome can reflect the biological events that promote cancer's aggressive behavior, and these can serve as molecular markers for improved patient management and survival. To this end, epithelial-mesenchymal transition (EMT) is a major process that promotes tumor invasion and metastasis, making EMT-related proteins attractive diagnostic biomarkers and therapeutic targets. In this study, we used immunohistochemistry to study the expression of a panel of transcription factors (TWIST1, SNAI1/2, ZEB1 and ZEB2) and other genes intimately related to EMT (CDH1 and LAMC2) at the invasive tumor front of OSCC tissues. The association between the expression of these proteins and clinico-pathological parameters were examined with Pearson Chi-square and correlation with survival was analyzed using Kaplan Meier analysis. Our results demonstrate that there was a significant differential expression of CDH1, LAMC2, SNAI1/2 and TWIST1 between OSCC and normal oral mucosa (NOM). Specifically, CDH1 loss was significantly associated with Broder's grading, while diffused LAMC2 was similarly associated with non-cohesive pattern of invasion. Notably, co-expression of TWIST1 and ZEB2 in OSCC was significantly associated with poorer overall survival, particularly in patients without detectable lymph node metastasis. This study demonstrates that EMT-related proteins are differentially expressed in OSCC and that the co-expression of TWIST1 and ZEB2 could be of clinical value in identifying patients with poor survival for appropriate patient management.
    Matched MeSH terms: Repressor Proteins/biosynthesis*
  3. Ismail CAN, Suppian R, Ab Aziz CB, Long I
    J Mol Neurosci, 2021 Feb;71(2):379-393.
    PMID: 32671697 DOI: 10.1007/s12031-020-01661-1
    The pharmacological inhibition of glial activation is one of the new approaches for combating neuropathic pain in which the role of glia in the modulation of neuropathic pain has attracted significant interest and attention. Neuron-glial crosstalk is achieved with N-methyl-D-aspartate-2B receptor (NMDAR-2B) activation. This study aims to determine the effect of ifenprodil, a potent noncompetitive NMDAR-2B antagonist, on activated microglia, brain-derived neurotrophic factors (BDNF) and downstream regulatory element antagonist modulator (DREAM) protein expression in the spinal cord of streptozotocin-induced painful diabetic neuropathy (PDN) rats following formalin injection. In this experimentation, 48 Sprague-Dawley male rats were randomly selected and divided into four groups: (n = 12): control, PDN, and ifenprodil-treated PDN rats at 0.5 μg or 1.0 μg for 7 days. Type I diabetes mellitus was then induced by injecting streptozotocin (60 mg/kg, i.p.) into the rats which were then over a 2-week period allowed to progress into the early phase of PDN. Ifenprodil was administered in PDN rats while saline was administered intrathecally in the control group. A formalin test was conducted during the fourth week to induce inflammatory nerve injury, in which the rats were sacrificed at 72 h post-formalin injection. The lumbar enlargement region (L4-L5) of the spinal cord was dissected for immunohistochemistry and western blot analyses. The results demonstrated a significant increase in formalin-induced flinching and licking behavior with an increased spinal expression of activated microglia, BDNF and DREAM proteins. It was also shown that the ifenprodil-treated rats following both doses reduced the extent of their flinching and duration of licking in PDN in a dose-dependent manner. As such, ifenprodil successfully demonstrated inhibition against microglia activation and suppressed the expression of BDNF and DREAM proteins in the spinal cord of PDN rats. In conclusion, ifenprodil may alleviate PDN by suppressing spinal microglia activation, BDNF and DREAM proteins.
    Matched MeSH terms: Repressor Proteins/biosynthesis*
  4. Lim FT, Ogawa S, Parhar IS
    J. Chem. Neuroanat., 2016 11;77:176-186.
    PMID: 27427471 DOI: 10.1016/j.jchemneu.2016.07.005
    Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.
    Matched MeSH terms: Repressor Proteins/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links