Displaying all 4 publications

Abstract:
Sort:
  1. Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN
    Microb Pathog, 2024 Aug;193:106773.
    PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773
    Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
    Matched MeSH terms: Saccharomycetales/genetics
  2. Freitas LFD, Barriga EJC, Barahona PP, Lachance MA, Rosa CA
    Int J Syst Evol Microbiol, 2013 Nov;63(Pt 11):4324-4329.
    PMID: 24014626 DOI: 10.1099/ijs.0.052282-0
    Twenty-four yeast strains were isolated from ephemeral flowers of Ipomoea spp. and Datura sp. and their associated insects in the Galápagos Archipelago, Ecuador, and from Ipomoea spp. and associated insects in the Cameron Highlands, Malaysia. Sequences of the D1/D2 domains of the large subunit rRNA gene indicated that these strains belong to a novel yeast species of the Kodamaea clade, although the formation of ascospores was not observed. The closest relative is Candida restingae. The human-mediated dispersion of this species by transpacific contacts in ancient times is suggested. The name Kodamaea transpacifica f.a., sp. nov. is proposed to accommodate these isolates. The type strain is CLQCA-24i-070(T) ( = CBS 12823(T) = NCYC 3852(T)); MycoBank number MB 803609.
    Matched MeSH terms: Saccharomycetales/genetics
  3. Lachance MA, Bowles JM, Wiens F, Dobson J, Ewing CP
    Int J Syst Evol Microbiol, 2006 Oct;56(Pt 10):2489-2493.
    PMID: 17012584 DOI: 10.1099/ijs.0.64452-0
    A novel species, Metschnikowia orientalis sp. nov., is described for haploid, heterothallic yeasts isolated from nitidulid beetles sampled in flowers in Rarotonga in the Cook Islands, and the Cameron Highlands of Malaysia. As evidenced by analysis of D1/D2 large subunit rDNA sequences, the species is related to Candida hawaiiana, to which it is similar in growth responses. Cylindrical, conjugated asci and acicular ascospores of moderate size are formed. Rudimentary mating reactions were observed with Metschnikowia aberdeeniae and Metschnikowia continentalis, but not with C. hawaiiana. The type strain of M. orientalis is UWOPS 99-745.6(T) (h(+)) (=CBS 10331(T)=NRRL Y-27991(T)) and the designated allotype is UWOPS 05-269.1 (h(-)) (=CBS 10330=NRRL Y-27992).
    Matched MeSH terms: Saccharomycetales/genetics
  4. Kurtzman CP
    Int J Syst Evol Microbiol, 2007 May;57(Pt 5):1154-1162.
    PMID: 17473275 DOI: 10.1099/ijs.0.64847-0
    The genus Blastobotrys, which now includes species previously assigned to the synonymous genera Arxula and Sympodiomyces, represents the anamorph of the ascosporogenous genus Trichomonascus. Six novel species are proposed for assignment to Blastobotrys. They were detected from their unique nucleotide sequences in large-subunit rDNA, ITS1-5.8S-ITS2 rDNA, mitochondrial small-subunit rDNA and the cytochrome oxidase II gene. The proposed novel species are Blastobotrys americana sp. nov. (type strain NRRL Y-6844(T)=CBS 10337(T); substrate unknown; Kansas, USA), Blastobotrys illinoisensis sp. nov. (type strain NRRL YB-1343(T)=CBS 10339(T); from forest debris; Illinois, USA), Blastobotrys malaysiensis sp. nov. (type strain NRRL Y-6417(T)=CBS 10336(T); from soil; Malaysia), Blastobotrys muscicola sp. nov. (type strain NRRL Y-7993(T)=CBS 10338(T); from moss; Louisiana, USA), Blastobotrys peoriensis sp. nov. (type strain NRRL YB-2290(T)=CBS 10340(T); from a fungus; Peoria, IL, USA) and Blastobotrys raffinosifermentans sp. nov. (type strain NRRL Y-27150(T)=CBS 6800(T); substrate unknown).
    Matched MeSH terms: Saccharomycetales/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links