Displaying all 2 publications

Abstract:
Sort:
  1. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Salt-Tolerance/genetics*
  2. Sultana S, Khew CY, Morshed MM, Namasivayam P, Napis S, Ho CL
    J Plant Physiol, 2012 Feb 15;169(3):311-8.
    PMID: 22024734 DOI: 10.1016/j.jplph.2011.09.004
    Monodehydroascorbate reductase (MDHAR), an important enzyme of the ascorbate-glutathione cycle, is involved in salt tolerance of plants through scavenging of reactive oxygen species (ROS). In this study, a cDNA encoding MDHAR from the mangrove plant Acanthus ebracteatus was introduced into rice to examine its role in salt tolerance. Three stable transgenic lines (MT22, MT24 and MT25) overexpressing AeMDHAR were selected in vitro using hygromycin and confirmed by PCR, quantitative reverse-transcription (qRT) PCR and enzyme assay. The transgenic line MT24 was predicted to possess a single copy of the transgene while the other two transgenic lines were predicted to have multiple transgene integrations. The AeMDHAR transcripts were detected only in transgenic rice lines but not in untransformed rice. The abundance of AeMDHAR transcripts in transgenic lines MT22 and MT25 was approximately 2.75 times the amount found in MT24. The transgenic rice lines overexpressing AeMDHAR showed a significant increase in MDHAR enzyme activity compared to untransformed plants under both NaCl and control conditions. All transgenic lines showed better yield attributes such as a higher tiller number and increased 1000-grain weight compared to non-transgenics. They also showed tolerance to salt at germination and seedling stages. The transgenic line MT24, which harbors a single copy of AeMDHAR, displayed a lower rate of sterility, a higher number of tillers and longer panicle compared to untransformed plants when subjected to salt stress.
    Matched MeSH terms: Salt-Tolerance/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links