Two reef margin species of tropical sea urchins, Echinometra sp. C (Ec) and Echinometra oblonga (Eo), occur sympatrically on Okinawa intertidal reefs in southern Japan. Hybridization between these species was examined through a series of cross-fertilization experiments. At limited sperm concentrations, where conspecific crosses reached near 100% fertilization, both heterospecific crosses showed high fertilization rates (81%-85%). The compatibility of the gametes demonstrated that if gamete recognition molecules are involved in fertilization of these species, they are not strongly species-specific. We found that conspecific crosses reached peak fertilization levels much faster than did heterospecific crosses, indicating the presence of a prezygotic barrier to hybridization in the gametes. Larval survival, metamorphosis, and juvenile and adult survival of hybrid groups were nearly identical to those of their parent species. Hybrids from crosses in both directions developed normally through larval stages to sexually mature adults, indicating that neither gametic incompatibility nor hybrid inviability appeared to maintain reproductive isolation between these species. In adults, Ec×Ec crosses gave the highest live weight, followed by Eo (ova)×Ec (sperm), Ec (ova)×Eo (sperm), and Eo×Eo. Other growth performance measures (viz., test size, Aristotle's lantern length, and gonad index) of hybrid groups and their parental siblings showed the same trends. The phenotypic color patterns of the hybrids were closer to the maternal coloration, whereas spine length, tube-foot and gonad spicule characteristics, pedicellaria valve length, and gamete sizes showed intermediate features. Adult F(1) hybrids were completely fertile and displayed high fertilization success in F(1) backcrosses, eliminating the likelihood that hybrid sterility is a postzygotic mechanism of reproductive isolation. Conversely, intensive surveys failed to find hybrid individuals in the field, suggesting the lack or rarity of natural hybridization. This strongly suggests that reproductive isolation is achieved by prezygotic isolating mechanism(s). Of these mechanisms, habitat segregation, gamete competition, differences in spawning times, gametic incompatibility or other genetic and non-genetic factors appear to be important in maintaining the integrity of these species.
The sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo-Pacific. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene flow across the Indo-Pacific we sequenced mitochondrial 16S rDNA, ATPase-6, and ATPase-8, and nuclear 28S rDNA and the Calpain-7 intron. Our analyses revealed that E. diadema formed a single trans-Indo-Pacific clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo-Pacific biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans-Indo-Pacific clade and Red Sea and Gulf of Oman clade split from the western and central Pacific clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level differentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specific. There was little colour polymorphism in E. diadema.