To assess the tolerance, the rye-grass L. grown on soil amended with petroleum wastewater (PWW) containing four metals lead, zinc, nickel and mercury. The PWW (25 to 50%) showed remarkable increase in length and biomass. Chlorophyll 'a and b' increased with an increase of PWW from 25-50% while such contents decreased on increasing the 75-100% compared to control. The mass balance performed on the system showed the removal of 90-97.6% lead, 85.5-92.9% zinc, 78.9-85.5% nickle and 47.6-27.5% mercury. The model for the maximum metal reduction rate (Rmax) was much better for Pb (89.5) and Zn (72.1) with respect to Ni (57.3) and Hg (32.4). Survival of rye-grass (30-days, statics, and renewal exposures) was increased by 50% as compared to control. The toxicity index Y of PWW showed 0-25% deficiency level, 25-50% tolerance level, 50-90% toxic level and 90-100% lethal level. The experimental data showing high correlation coefficient (R2 = 0.98).
Coeliac disease (CD) is an inflammatory disorder of the small intestine. It includes aberrant adaptive immunity with presentation of CD toxic gluten peptides by HLA-DQ2 or DQ8 molecules to gluten-sensitive T cells. A ω-gliadin/C-hordein peptide (QPFPQPEQPFPW) and a rye-derived secalin peptide (QPFPQPQQPIPQ) were proposed to be toxic in CD, as they yielded positive responses when assessed with peripheral blood T-cell clones derived from individuals with CD. We sought to assess the immunogenicity of the candidate peptides using gluten-sensitive T-cell lines obtained from CD small intestinal biopsies. We also sought to investigate the potential cross-reactivity of wheat gluten-sensitive T-cell lines with peptic-tryptic digested barley hordein (PTH) and rye secalin (PTS). Synthesised candidate peptides were deamidated with tissue transglutaminase (tTG). Gluten-sensitive T-cell lines were generated by culturing small intestinal biopsies from CD patients with peptic-tryptic gluten (PTG), PTH or PTS, along with autologous PBMCs for antigen presentation. The stimulation indices were determined by measuring the relative cellular proliferation via incorporation of (3) H-thymidine. The majority of T-cell lines reacted to the peptides studied. There was also cross-reactivity between wheat gluten-sensitive T-cell lines and the hordein, gliadin and secalin peptides. PTH, PTS, barley hordein and rye secalin-derived CD antigen-sensitive T-cell lines showed positive stimulation with PTG. ω-gliadin/C-hordein peptide and rye-derived peptide are immunogenic to gluten-sensitive T-cell lines and potentially present in wheat, rye and barley. Additional CD toxic peptides may be shared.