Displaying all 4 publications

Abstract:
Sort:
  1. Ahmad AF, Ngui R, Muhammad Aidil R, Lim YA, Rohela M
    Trop Biomed, 2014 Dec;31(4):836-43.
    PMID: 25776610 MyJurnal
    Limited data is available on the prevalence of parasitic infections among the island communities in Malaysia with most studies performed between 1960s-1980s. This study was conducted to determine the current prevalence status of parasitic infections among communities living in Pangkor Island Peninsular Malaysia. A total of 131 stool and 298 serum samples were collected and subjected to microscopic examination for intestinal protozoa and helminths and detection of Toxoplasma gondii antibodies using commercial ELISA kits respectively. In addition, thin and thick peripheral blood films were microscopically screened for the presence of Plasmodium spp. and microfilariae respectively. The overall prevalence of intestinal parasitic infections among Pangkor Island community was 9.9% (13/131) with T. trichiura (5.3%) being the most common intestinal parasite detected. Toxoplasmosis was reported in almost 60% of the community with the seroprevalence being significantly high among females (64.7%) compared to males (52.8%) (p=0.038). None of those examined samples were infected with intestinal sarcocystosis, malaria and filariasis. This study revealed that the prevalence of intestinal parasitic infections among Pangkor Island community has been greatly reduced compared to that reported 35 years ago. Massive improvements in the socioeconomic status, personal hygiene, water facilities and sanitation may have contributed to the low prevalence of parasitic infections in this community. Nevertheless, further studies still need to be performed to determine the possible risk factors for the high prevalence of toxoplasmosis in this community.
    Matched MeSH terms: Serum/immunology
  2. Moi ML, Lim CK, Chua KB, Takasaki T, Kurane I
    PLoS Negl Trop Dis, 2012;6(2):e1536.
    PMID: 22389741 DOI: 10.1371/journal.pntd.0001536
    Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo.
    Matched MeSH terms: Serum/immunology*
  3. Tiong V, Lam CW, Phoon WH, AbuBakar S, Chang LY
    Jpn J Infect Dis, 2017 Jan 24;70(1):26-31.
    PMID: 27169942 DOI: 10.7883/yoken.JJID.2015.501
    The genes for Nipah virus (NiV) proteins were amplified from viral RNA, cloned into the plasmid pTriEx-3 Hygro, expressed, and purified using immobilized metal affinity chromatography. The recombinant N, F, and G NiV proteins (rNiV-N, rNiV-F, and rNiV-G), were successfully expressed in Escherichia coli and purified with a yield of 4, 16, and 4 mg/L, respectively. All 3 recombinant viral proteins reacted with all 19 samples of NiV-positive human sera. The rNiV-N and rNiV-G proteins were the most immunogenic. The recombinant viral proteins did not react with any of the 12 NiV-negative sera. However, serum from a patient with a late-onset relapsing NiV infection complication was found to be primarily reactive to rNiV-G only. Additionally, there is a distinctive variation in the profile of antigen-reactive bands between the sample from a case of relapsing NiV encephalitis and that of acute NiV infection. The overall findings of this study suggest that the recombinant viral proteins have the potential to be developed further for use in the detection of NiV infection, and continuous biosurveillance of NiV infection in resource-limited settings.
    Matched MeSH terms: Serum/immunology
  4. Hasan SI, Mohd Ashari NS, Mohd Daud K, Che Husin CM
    Int J Rheum Dis, 2013 Aug;16(4):430-6.
    PMID: 23992264 DOI: 10.1111/1756-185X.12062
    BACKGROUND: The ethiopathogenesis of increased apoptosis of lymphocytes in systemic lupus erythematosus (SLE) is still incompletely understood but anti-C1q autoantibodies have been shown to induce apoptosis in lymphocytes from healthy donors and certain cell lines.
    AIM: This study was undertaken to investigate the relationship between peripheral lymphocyte apoptosis and serum levels of anti-C1q autoantibodies in SLE patients.
    METHODS: The sera of 124 patients with SLE involving 62 active SLE and 62 inactive SLE, fulfilling America College of Rheumatology (ACR) classification criteria for SLE (1997) were incubated with peripheral blood lymphocytes of healthy donors. The results were compared with 124 sex- and age-matched normal controls. Apoptotic lymphocytes (AL) were detected by flow cytometry using annexin V and propidium iodide binding. Anti-C1q autoantibodies were detected by an enzyme-linked immunoassay kit for all SLE patients.
    RESULTS: Results demonstrated that the percentage of AL in the peripheral blood of active SLE patients was significantly higher (n = 62, 34.95 ± 12.78%) than that of the inactive SLE patients (n = 62, 30.69 ± 10.13%, P = 0.042, 95%CI = 0.16-8.36) and normal controls (n = 124, 27.92 ± 10.22%, P = 0.001, 95%CI = 3.33-10.73). The percentage of AL significantly correlated with serum levels of anti-C1q autoantibodies in the active SLE patients (r = 0.263, P = 0.039) but not in the inactive SLE patients (r = 0.170, P = 0.185).
    CONCLUSION: The results of this study suggest that increased serum levels of anti-C1q autoantibodies are responsible for apoptosis and may play a pathogenic role in SLE patients, especially in active disease.
    KEYWORDS: anti-C1q; apoptosis; flowcytometry; systemic lupus erythematosus
    Study site: Medical outpatient clinic and medical wards, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
    Matched MeSH terms: Serum/immunology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links