Displaying all 3 publications

Abstract:
Sort:
  1. Beausoleil NJ, Farouk MM, Webster J, Johnson CB, Dowling S, Sazili AQ, et al.
    N Z Vet J, 2024 Sep;72(5):288-299.
    PMID: 38946044 DOI: 10.1080/00480169.2024.2367532
    AIMS: To compare the recovery of lambs, goats, and calves from head-only (HO) or high-frequency head-to-body stunning and evaluate the complementary use of behaviour and electroencephalography (EEG) to assess return to consciousness after electrical stunning in these species.

    METHODS: Six-month-old lambs, adult goats and calves (< 7 days old) were subjected to reversible head-only stunning (50 Hz, 1 A, 2 seconds) or reversible high-frequency head-to-body stunning (RHTB: HO followed by 2,000 Hz, 2 A, 4-second stun to body). Following stunning, behavioural recovery was assessed in 21 lambs, 22 goats, and 20 calves. Latencies to first perform behaviours (end of convulsions, head lift, attempt to right, successful righting, attempt to stand, successful standing) after stunning were scored from video recordings. Recovery of electrical brain activity indicative of consciousness was assessed using EEG in a separate cohort of minimally-anaesthetised lambs, goats and calves (n = 20 per species). EEG traces collected before and after stunning were classified as normal, epileptiform, isoelectric, or transitional activity. Following stunning, the duration of epileptiform and isoelectric activity combined (states of brain activity incompatible with conscious awareness) was calculated, as was latency to return of normal (pre-stun) EEG.

    RESULTS: The RHTB stun was reversible in all three species, although one sheep failed to recover and was euthanised. Both methods caused tonic and clonic convulsions in all species. Behavioural recovery of sheep and calves was similar for both methods while goats took longer to recover from RHTB than HO stunning. There was no evidence of differences between methods in the duration of EEG incompatible with consciousness or the latency to recovery of normal EEG.

    CONCLUSIONS: Head-to-body stunning as applied here produced a reversible electrical stun in lambs, adult goats and young calves, although the benefits in terms of meat quality and operator safety are uncertain. Goats took longer to recover behaviourally from head-to-body stunning, possibly due to disrupted motor function, but there was no indication that post-stun unconsciousness lasted longer than following head-only stunning in any species. The normal behaviour for the animals' developmental age should be considered when deciding on behavioural indicators of recovery. The minimal anaesthesia model provided excellent quality EEG data that was valuable for interpretation of the behavioural responses.

    CLINICAL RELEVANCE: For the purposes of pre-slaughter stunning of sheep, goats and young calves, recovery appears comparable between the two methods, with all but 1/63 animals in the behaviour study recovering normal function.

    Matched MeSH terms: Sheep/physiology
  2. Abdullah AS, Rajion MA
    Vet Hum Toxicol, 1990 Oct;32(5):444-5.
    PMID: 2238442
    Brachiaria decumbens toxicity resulted in an altered reticulorumen environment in the sheep. This adversely affected the growth and activity of microorganisms in the rumen as reflected by greatly decreased concentrations of the volatile fatty acids (acetic, propionic and butyric) in B decumbens-intoxicated sheep.
    Matched MeSH terms: Sheep/physiology*
  3. Yahaya B
    ScientificWorldJournal, 2012;2012:961684.
    PMID: 23049478 DOI: 10.1100/2012/961684
    Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.
    Matched MeSH terms: Sheep/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links