Aeromonas hydrophila strains obtained from diarrhoeal samples of human patients (19 isolates) and freshwater ponds (11 isolates) were analysed for siderophore production. Both clinical and environmental isolates showed significantly increased siderophore production under iron-limiting conditions both at 28 degrees C and at 37 degrees C. Clinical isolates consistently produced higher levels of siderophores than did the environmental isolates. The role of plasmids in moderating siderophore production was studied after curing with acridine orange. Treatment with acridine orange for 24 h removed the larger plasmids but the smaller plasmids (< 5 MDa), more common in the environmental isolates, were resistant to curing. As found in the untreated isolates, the cured clinical isolates produced higher mean levels of siderophores than the cured environmental isolates. Siderophore production in A. hydrophila was significantly influenced by iron-limiting cultural conditions and the source of isolates, but plasmid content and growth temperature at 28 degrees C or 37 degrees C had little effect on production. The basis for the greater production of siderophores in clinical isolates than in environmental isolates needs further study.
Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.
Ganoderma boninense is the causal agent of a devastating disease affecting oil palm in Southeast Asian countries. Basal stem rot (BSR) disease slowly rots the base of palms, which radically reduces productive lifespan of this lucrative crop. Previous reports have indicated the successful use of Trichoderma as biological control agent (BCA) against G. boninense and isolate T. virens 7b was selected based on its initial screening. This study attempts to decipher the mechanisms responsible for the inhibition of G. boninense by identifying and characterizing the chemical compounds as well as the physical mechanisms by T. virens 7b. Hexane extract of the isolate gave 62.60% ± 6.41 inhibition against G. boninense and observation under scanning electron microscope (SEM) detected severe mycelial deformation of the pathogen at the region of inhibition. Similar mycelia deformation of G. boninense was observed with a fungicide treatment, Benlate(®) indicating comparable fungicidal effect by T. virens 7b. Fraction 4 and 5 of hexane active fractions through preparative thin layer chromatography (P-TLC) was identified giving the best inhibition of the pathogen. These fractions comprised of ketones, alcohols, aldehydes, lactones, sesquiterpenes, monoterpenes, sulphides, and free fatty acids profiled through gas chromatography mass spectrometry detector (GC/MSD). A novel antifungal compound discovery of phenylethyl alcohol (PEA) by T. virens 7b is reported through this study. T. virens 7b also proved to be an active siderophore producer through chrome azurol S (CAS) agar assay. The study demonstrated the possible mechanisms involved and responsible in the successful inhibition of G. boninense.