Displaying all 5 publications

Abstract:
Sort:
  1. Majeed R, Elnawawy HM, Kutty MG, Yahya NA, Azami NH, Abu Kasim NH, et al.
    Odontology, 2023 Oct;111(4):759-776.
    PMID: 36864211 DOI: 10.1007/s10266-023-00786-0
    This systematic review evaluated the effects of nano-sized cement particles on the properties of calcium silicate-based cements (CSCs). Using defined keywords, a literature search was conducted to identify studies that investigated properties of nano-calcium silicate-based cements (NCSCs). A total of 17 studies fulfilled the inclusion criteria. Results indicated that NCSC formulations have favourable physical (setting time, pH and solubility), mechanical (push out bond strength, compressive strength and indentation hardness) and biological (bone regeneration and foreign body reaction) properties compared with commonly used CSCs. However, the characterization and verification for the nano-particle size of NCSCs were deficient in some studies. Furthermore, the nanosizing was not limited to the cement particles and a number of additives were present. In conclusion, the evidence available for the properties of CSC particles in the nano-range is deficient-such properties could be a result of additives which may have enhanced the properties of the material.
    Matched MeSH terms: Silicates/pharmacology
  2. Cahyanto A, Rath P, Teo TX, Tong SS, Malhotra R, Cavalcanti BN, et al.
    J Dent Res, 2023 Dec;102(13):1425-1433.
    PMID: 37861249 DOI: 10.1177/00220345231198185
    Calcium silicate (C3S) cements are available in kits that do not account for patients' specific needs or clinicians' preferences regarding setting time, radiopacity, mechanical, and handling properties. Moreover, slight variations in powder components and liquid content affect cement's properties and bioactivity. Unfortunately, it is virtually impossible to optimize several cement properties simultaneously via the traditional "one variable at a time" strategy, as inputs often induce trade-offs in properties (e.g., a higher water-to-powder ratio [W/P] increases flowability but decreases mechanical properties). Herein, we used Taguchi's methods and genetic algorithms (GAs) to simultaneously analyze the effect of multiple inputs (e.g., powder composition, radiopacifier concentration, and W/P) on setting time, pH, flowability, diametral tensile strength, and radiopacity, as well as prescribe recipes to produce cements with predicted properties. The properties of cements designed with GAs were experimentally tested, and the results matched the predictions. Finally, we show that the cements increased the genetic expression of odonto/osteogenic genes, alkaline phosphatase activity, and mineralization potential of dental pulp stem cells. Hence, GAs can produce cements with tailor-made properties and differentiation potential for personalized endodontic treatment.
    Matched MeSH terms: Silicates/pharmacology
  3. Neelakantan P, Ahmed HMA, Wong MCM, Matinlinna JP, Cheung GSP
    Int Endod J, 2018 Aug;51(8):847-861.
    PMID: 29377170 DOI: 10.1111/iej.12898
    The aim of this systematic review was to address the question: Do different irrigating protocols have an impact on the dislocation resistance of mineral trioxide aggregate (MTA)-based materials? The review was performed using a well-defined search strategy in three databases (PubMed, Scopus, Web of Science) to include laboratory studies performed between January 1995 and May 2017, in accordance with PRISMA guidelines. Two reviewers analysed the papers, assessed the risk of bias and extracted data on teeth used, sample size, size of root canal preparation, type of MTA-based material, irrigants, canal filling method, storage method and duration, region of roots and the parameters of push-out testing (slice thickness, plunger dimensions and plunger loading direction), the main results and dislocation resistance values (in MPa). From 255 studies, 27 were included for full-text analysis. Eight papers that met the inclusion criteria were included in this review. There was a wide variation in dislocation resistance due to differences in irrigation sequence, time and concentration of irrigants, storage method and duration, and the parameters of push-out bond strength testing. A meta-analysis was not done but qualitative synthesis of the included studies was performed. No definitive conclusion could be drawn to evaluate the effect of irrigation protocols on dislocation resistance of MTA-based materials. Recommendations have been provided for standardized testing methods and reporting of future studies, so as to obtain clinically relevant information and to understand the effects of irrigating protocols on root canal sealers and their interactions with the dentine walls of root canals.
    Matched MeSH terms: Silicates/pharmacology*
  4. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P, Anbu P, Lakshmipriya T
    Sci Rep, 2020 Feb 25;10(1):3351.
    PMID: 32099019 DOI: 10.1038/s41598-020-60208-x
    An incredible amount of joss fly ash is produced from the burning of Chinese holy joss paper; thus, an excellent method of recycling joss fly ash waste to extract aluminosilicate nanocomposites is explored. The present research aims to introduce a novel method to recycle joss fly ash through a simple and straightforward experimental procedure involving acidic and alkaline treatments. The synthesized aluminosilicate nanocomposite was characterized to justify its structural and physiochemical characteristics. A morphological analysis was performed with field-emission transmission electron microscopy, and scanning electron microscopy revealed the size of the aluminosilicate nanocomposite to be ~25 nm, while also confirming a uniformly spherical-shaped nanostructure. The elemental composition was measured by energy dispersive spectroscopy and revealed the Si to Al ratio to be 13.24 to 7.96, showing the high purity of the extracted nanocomposite. The roughness and particle distribution were analyzed using atomic force microscopy and a zeta analysis. X-ray diffraction patterns showed a synthesis of faceted and cubic aluminosilicate crystals in the nanocomposites. The presence of silica and aluminum was further proven by X-ray photoelectron spectroscopy, and the functional groups were recognized through Fourier transform infrared spectroscopy. The thermal capacity of the nanocomposite was examined by a thermogravimetric analysis. In addition, the research suggested the promising application of aluminosilicate nanocomposites as drug carriers. The above was justified by an enzyme-linked apta-sorbent assay, which claimed that the limit of the aptasensing aluminosilicate-conjugated ampicillin was two-fold higher than that in the absence of the nanocomposite. The drug delivery property was further justified through an antibacterial analysis against Escherichia coli (gram-negative) and Bacillus subtilis (gram-positive).
    Matched MeSH terms: Aluminum Silicates/pharmacology*
  5. Mohammadi H, Sepantafar M
    Iran Biomed J, 2016 Sep;20(4):189-200.
    PMID: 26979401
    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated.
    Matched MeSH terms: Silicates/pharmacology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links