Displaying all 2 publications

Abstract:
Sort:
  1. Ho YB, Abdullah NH, Hamsan H, Tan ESS
    Regul Toxicol Pharmacol, 2017 Aug;88:72-76.
    PMID: 28554823 DOI: 10.1016/j.yrtph.2017.05.018
    This study aims to determine concentrations of mercury in facial skin lightening cream according to different price categories (category I: skin lightening creams were determined during a preliminary market survey. Thereafter, twenty samples were purchased from various locations such as cosmetic stalls, beauty shops, pharmacies and street vendors based on their stratified price categories. Samples were extracted using microwave digester and analyzed using cold vapor atomic absorption spectrometry (CV-AAS). Non-carcinogenic chronic health risks for application of facial skin lightening cream were calculated using Dermal Absorption Dose (DAD) and Hazard Quotient (HQ). Concentrations of mercury in samples were less than the United States Food and Drug Administration (USFDA) permitted trace levels (<1 ppm) except for one sample from category III which was manufactured in China. Concentrations of mercury in facial skin lightening creams ranged from not detected to 1.13 mg kg-1. There was no significant association between concentrations of mercury with price categories (p = 0.12). There was no significant non-carcinogenic health risk due to daily application of the facial skin lightening creams based on assumption of 30 years exposure period (HQ 
    Matched MeSH terms: Skin Lightening Preparations/analysis*
  2. Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, et al.
    BMC Complement Altern Med, 2014 Oct 07;14:381.
    PMID: 25292439 DOI: 10.1186/1472-6882-14-381
    BACKGROUND: Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient.

    METHODS: Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength).

    RESULTS: LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent.

    CONCLUSIONS: Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

    Matched MeSH terms: Skin Lightening Preparations/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links