The knowledge of venom pharmacokinetics is essential to improve the understanding of envenomation pathophysiology. Using a double-sandwich ELISA, this study investigated the pharmacokinetics of the venom of hump-nosed pit viper (Hypnale hypnale) following intravenous and intramuscular injections into rabbits. The pharmacokinetics of the venom injected intravenously fitted a three-compartment model. There is a rapid (t1/2π = 0.4 h) and a slow (t1/2α = 0.8 h) distribution phase, followed by a long elimination phase (t1/2β = 19.3 h) with a systemic clearance of 6.8 mL h(-1) kg(-1), consistent with the prolonged abnormal hemostasis reported in H. hypnale envenomation. On intramuscular route, multiple peak concentrations observed in the beginning implied a more complex venom absorption and/or distribution pattern. The terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were nevertheless not significantly different (p > 0.05) from that of the venom injected intravenously. The intramuscular bioavailability was exceptionally low (Fi.m. = 4%), accountable for the highly varied median lethal doses between intravenous and intramuscular envenomations in animals. The findings indicate that the intramuscular route of administration does not significantly alter the pharmacokinetics of H. hypnale venom although it significantly reduces the systemic bioavailability of the venom.
The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t90, time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable intravenous median lethal dose (LD50) (0.56-0.63 μg/g) and cause neurotoxic envenomation in mice. LCMS/MS identified six waglerin forms as the predominant lethal principles, comprising 38.2% of total venom proteins. Fourteen other toxin-protein families identified include phospholipase A2, serine proteinase, snaclec and metalloproteinase. In mice, HPLC fractions containing these proteins showed insignificant contribution to the overall venom lethality. Besides, the unique elution pattern of approximately 34.5% of non-lethal, low molecular mass proteins (3-5 kDa) on HPLC could be potential biomarker for this primitive crotalid species. Together, the study unveiled the venom proteome of T. wagleri that is atypical among many pit vipers as it comprises abundant neurotoxic peptides (waglerins) but little hemotoxic proteinases. The findings also revealed that the venom is relatively well conserved intraspecifically despite the drastic morphological differences between sexes.