Displaying all 5 publications

Abstract:
Sort:
  1. Tan CH, Tan KY, Tan NH
    Methods Mol Biol, 2019;1871:83-92.
    PMID: 30276733 DOI: 10.1007/978-1-4939-8814-3_5
    Snake venoms are complex mixtures of proteins and peptides that play vital roles in the survival of venomous snakes. As with their diverse pharmacological activities, snake venoms can be highly variable, hence the importance of understanding the compositional details of different snake venoms. However, profiling venom protein mixtures is challenging, in particular when dealing with the diversity of protein subtypes and their abundances. Here we described an optimized strategy combining a protein decomplexation method with in-solution trypsin digestion and mass spectrometry of snake venom proteins. The approach involves the integrated use of C18 reverse-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and nano-electrospray ionization tandem mass spectrometry (nano-ESI-LC-MS/MS).
    Matched MeSH terms: Snake Venoms/metabolism*
  2. Tan CH, Tan KY
    Methods Mol Biol, 2019;1871:153-158.
    PMID: 30276739 DOI: 10.1007/978-1-4939-8814-3_11
    Reverse-phase high-performance liquid chromatography is commonly employed as a decomplexing strategy in snake venom proteomics. The chromatographic fractions often contain relatively pure toxins that can be assessed functionally for toxicity level through the determination of their median lethal doses (LD50). Further, antivenom efficacy can be evaluated specifically against these venom fractions to understand the limitation of the antivenom as the treatment for snake envenomation. However, methods of toxicity assessment and antivenom evaluation vary across laboratories; hence there is a need to standardize the protocols and parameters, in particular those related to the neutralizing efficacy of antivenom. This chapter outlines the important in vivo techniques and data interpretation that can be applied in the functional study of snake venom proteomes.
    Matched MeSH terms: Snake Venoms/metabolism*
  3. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1991;99(2):351-4.
    PMID: 1764914
    1. The protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, procoagulant, anticoagulant and hemorrhagic activities of ten samples of venoms from seven taxa of sea snakes were examined. 2. The results show that venoms of sea snakes of both subfamilies of Hydrophiinae and Laticaudinae are characterized by a very low level of enzymatic activities, except phospholipase A activity and, for some species, hyaluronidase activity. 3. Because of the low levels of enzymatic activities and the total lack of procoagulant and hemorrhagic activities, venom biological properties are not useful for the differentiation of species of sea snakes. Nevertheless, the unusually low levels of enzymatic activities of sea snake venoms may be used to distinguish sea snake venoms from other elapid or viperid venoms.
    Matched MeSH terms: Snake Venoms/metabolism*
  4. Ratanabanangkoon K, Simsiriwong P, Pruksaphon K, Tan KY, Eursakun S, Tan CH, et al.
    Sci Rep, 2017 08 17;7(1):8545.
    PMID: 28819275 DOI: 10.1038/s41598-017-08962-3
    Snake envenomation is an important medical problem. One of the hurdles in antivenom development is the in vivo assay of antivenom potency which is expensive, gives variable results and kills many animals. We report a novel in vitro assay involving the specific binding of the postsynaptic neurotoxins (PSNTs) of elapid snakes with purified Torpedo californica nicotinic acetylcholine receptor (nAChR). The potency of an antivenom is determined by its antibody ability to bind and neutralize the PSNT, thus preventing it from binding to nAChR. The PSNT of Naja kaouthia (NK3) was immobilized on microtiter wells and nAChR was added to bind with it. The in vitro IC50 of N. kaouthia venom that inhibited 50% of nAChR binding to the immobilized NK3 was determined. Varying concentrations of antisera against N. kaouthia were separately pre-incubated with 5xIC50 of N. kaouthia venom. The remaining free NK3 were incubated with nAChR before adding to the NK3 coated plates. The in vitro and in vivo median effective ratio, ER50s of 12 batches of antisera showed correlation (R 2) of 0.9809 (p 
    Matched MeSH terms: Snake Venoms/metabolism
  5. Tan NH, Ponnudurai G
    PMID: 1360387
    1. The enzymatic, hemorrhagic, procoagulant and anticoagulant activities of venoms of some animals including snakes, lizards, toads, scorpions, spider, wasps, bees and ants were compared. 2. Snake venom was the richest source of enzymes among the animal venoms. Most other animal venoms were devoid of phosphodiesterase, L-amino acid oxidase, alkaline phosphomonoesterase and acetylcholinesterase activities and only a few exhibited arginine ester hydrolase activity. These venoms, however, exhibited wide ranges of protease, 5'-nucleotidase and hyaluronidase activities. Most of the animal venoms examined exhibited some phospholipase A activity. 3. Other than snake venoms, only venoms of the toad Bufo calamita and the lizards were hemorrhagic, and only venoms of the social wasps, social bees and harvester ant exhibited strong anticoagulant activity. Procoagulant activity occurs only in snake venoms.
    Matched MeSH terms: Snake Venoms/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links