This report assesses the effects of stratospheric ozone depletion and anticipated ozone recovery on the intensity of ultraviolet (UV) radiation at the Earth's surface. Interactions between changes in ozone and changes in climate, as well as their effects on UV radiation, are also considered. These evaluations focus mainly on new knowledge gained from research conducted during the last four years. Furthermore, drivers of changes in UV radiation other than ozone are discussed and their relative importance is assessed. The most important of these factors, namely clouds, aerosols and surface reflectivity, are related to changes in climate, and some of their effects on short- and long-term variations of UV radiation have already been identified from measurements. Finally, projected future developments in stratospheric ozone, climate, and other factors affecting UV radiation have been used to estimate changes in solar UV radiation from the present to the end of the 21st century. New instruments and methods have been assessed with respect to their ability to provide useful and accurate information for monitoring solar UV radiation at the Earth's surface and for determining relevant exposures of humans. Evidence since the last assessment reconfirms that systematic and accurate long-term measurements of UV radiation and stratospheric ozone are essential for assessing the effectiveness of the Montreal Protocol and its Amendments and adjustments. Finally, we have assessed aspects of UV radiation related to biological effects and human health, as well as implications for UV radiation from possible solar radiation management (geoengineering) methods to mitigate climate change.
Marine algae have been reported as important sources of biogenic volatile halocarbons that are emitted into the atmosphere. These compounds are linked to destruction of the ozone layer, thus contributing to climate change. There may be mutual interactions between the halocarbon emission and the environment. In this study, the effect of irradiance on the emission of halocarbons from selected microalgae was investigated. Using controlled laboratory experiments, three tropical marine microalgae cultures, Synechococcus sp. UMACC 371 (cyanophyte), Parachlorella sp. UMACC 245 (chlorophyte) and Amphora sp. UMACC 370 (diatom) were exposed to irradiance of 0, 40 and 120 µmol photons m-2s-1. Stress in the microalgal cultures was indicated by the photosynthetic performance (Fv/Fm, maximum quantum yield). An increase in halocarbon emissions was observed at 120 µmol photons m-2s-1, together with a decrease in Fv/Fm. This was most evident in the release of CH3I by Amphora sp. Synechococcus sp. was observed to be the most affected by irradiance as shown by the increase in emissions of most halocarbons except for CHBr3 and CHBr2Cl. High positive correlation between Fv/Fm and halocarbon emission rates was observed in Synechococcus sp. for CH2Br2. No clear trends in correlation could be observed for the other halocarbons in the other two microalgal species. This suggests that other mechanisms like mitochondria respiration may contribute to halocarbon production, in addition to photosynthetic performance.
Ultraviolet radiation is at shorter wavelengths than the visible spectrum (400 to 700 nm) and is divided into three components: UV-A (315 to 400 nm), UV-B (280 to 315 nm), and UV-C (less than 280 nm). Global increases in UV-B fluxes from decreasing stratospheric ozone amounts caused by anthropogenic chlorine releasing gases (mostly chlorofluorocarbons) have been a matter of public concern for the past 20 years. This surface UV irradiance data retrieved from Ozone Monitoring Instrument (OMI) from AURA spacecraft with the filename OMUVB. OMUVB contains surface UV irradiance data along with supplementary information generated using the OMI global mode measurements. In this mode each file contains the sunlit portion of a single orbit from pole-to-pole, with an approximately 2600 km wide swath composed of 60 ground pixels. The OMI measurements are used to estimate the ultraviolet (UV) radiation reaching the Earth’s surface. The product contains spectral irradiances at 305.1, 310.1, 324.1, and 380.1 nm corresponding to both the overpass time and the local solar noon. Using the correspondence latitude and longitude of Peninsular Malaysia, we can develop the pattern of distribution of UV irradiance interpolations using Sigma Plot and Adobe Photoshop.
HCFCs, in addition to destroying the ozone layer, have been recognized as a contributing factor that increases global warming. It is widely used as working fluid in window air-conditioning system, where capillary tube serves as an expansion device. Literature reports have shown that no single refrigerant can solve the problem of ozone layer depletion and global warming. Refrigerant HC290/HC600a/HFC407C mixture, an eco-friendly refrigerant, has been recognized as an alternative to HCFC22. The objective of this study is to, for cost effectiveness, develop an empirical correlation to predict the refrigerant HC290/ HC600a/HFC407C mixture mass flow rate using statistical experimental design approach. A review of relevant literature shows that refrigerant’s mass flow rate depends on condensing temperature, degree of subcooling, inner diameter and length of capillary tube. The relationship between the mass flow rate and the four independent variables was established as an empirical mathematical correlation using central composite design (CCD), a response surface methodology (RSM). This empirical correlation was examined using analysis of variance (ANOVA) of 5% level of significance. The results of these analysis showed that the correlation fitted well with the experimental data yielding an average and standard deviation of 1.05% and 2.62%, respectively. The validity of the present correlation was further assessed by comparing it with published empirical correlation in literature and the result showed that the present correlation is consistent.