Previously, the hypothetical protein, KPN00728 from Klebsiella pneumoniae MGH78578 was the Succinate dehydrogenase (SDH) chain C subunit via structural prediction and molecular docking simulation studies. However, due to limitation in docking simulation, an in-depth understanding of how SDH interaction occurs across the transmembrane of mitochondria could not be provided.
Twenty percent of genes that encode for hypothetical proteins from Klebsiella pneumoniae MGH78578 were identified, leading to KPN00728 and KPN00729 after bioinformatics analysis. Both open reading frames showed high sequence homology to Succinate dehydrogenase Chain C (SdhC) and D (SdhD) from Escherichia coli. Recently, KPN00729 was assigned as SdhD. KPN00728 thus remains of particular interest as no annotated genes from the complete genome sequence encode for SdhC. We discovered KPN00728 has a missing region with conserved residues important for ubiquinone (UQ) and heme group binding. Structure and function prediction of KPN00728 coupled with secondary structure analysis and transmembrane topology showed KPN00728 adopts SDH-(subunit C)-like structure. To further probe its functionality, UQ was docked on the built model (consisting KPN00728 and KPN00729) and formation of hydrogen bonds between UQ and Ser27, Arg31 (KPN00728) and Tyr84 (KPN00729) further reinforces and supports that KPN00728 is indeed SDH. This is the first report on the structural and function prediction of KPN00728 of K. pneumoniae MGH78578 as SdhC.